-
Notifications
You must be signed in to change notification settings - Fork 6
/
.project-metadata.yaml
100 lines (90 loc) · 2.44 KB
/
.project-metadata.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
name: Continuous Model Monitoring
description: >-
Demonstration of how to perform continuous model monitoring on CML
using Model Metrics and Evidently.ai dashboards
author: Cloudera Inc.
specification_version: 1.0
prototype_version: 2.0
date: "2022-04-01"
environment_variables:
DEV_MODE:
default: False
description: >-
Flag to indicate if the AMP should run on a 5% sample of the dataset
(True) to facilitate efficient project development or the full dataset (False).
required: True
feature_dependencies:
- model_metrics
runtimes:
- editor: PBJ Workbench
kernel: Python 3.9
edition: Standard
tasks:
- type: run_session
name: Install Dependencies
script: scripts/install_dependencies.py
memory: 2
cpu: 1
- type: run_session
name: Prepare Data
script: scripts/prepare_data.py
memory: 2
cpu: 1
- type: run_session
name: Train Model
script: scripts/train.py
memory: 4
cpu: 2
- type: create_model
name: Price Regressor
entity_label: pr_model
description: Predict housing prices with ridge regression
access_key_environment_variable: SHTM_ACCESS_KEY
default_resources:
cpu: 1
memory: 2
default_replication_policy:
type: fixed
num_replicas: 1
- type: build_model
name: Price Regressor
entity_label: pr_model
target_file_path: scripts/predict.py
target_function_name: predict
examples:
- request:
{
"record":
{
"id": 1962200037,
"price": 626000,
"bedrooms": 3,
"bathrooms": 2.25,
"sqft_living": 1750,
"sqft_lot": 1572,
"floors": 2.5,
"waterfront": 0,
"view": 0,
"condition": 3,
"grade": 9,
"sqft_above": 1470,
"sqft_basement": 280,
"yr_built": 2005,
"yr_renovated": 0,
"zipcode": 98102,
"lat": 47.6498,
"long": -122.321,
"sqft_living15": 2410,
"sqft_lot15": 3050,
"date_sold": "2014-05-02",
"date_listed": "2014-03-04",
},
}
- type: deploy_model
name: Price Regressor
entity_label: pr_model
- type: run_session
name: Run Simulation
script: scripts/simulate.py
memory: 4
cpu: 2