forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Clustering.h
101 lines (76 loc) · 2.93 KB
/
Clustering.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_CLUSTERING_H
#define FAISS_CLUSTERING_H
#include <faiss/Index.h>
#include <vector>
namespace faiss {
/** Class for the clustering parameters. Can be passed to the
* constructor of the Clustering object.
*/
struct ClusteringParameters {
int niter; ///< clustering iterations
int nredo; ///< redo clustering this many times and keep best
bool verbose;
bool spherical; ///< do we want normalized centroids?
bool int_centroids; ///< round centroids coordinates to integer
bool update_index; ///< update index after each iteration?
bool frozen_centroids; ///< use the centroids provided as input and do not change them during iterations
int min_points_per_centroid; ///< otherwise you get a warning
int max_points_per_centroid; ///< to limit size of dataset
int seed; ///< seed for the random number generator
/// sets reasonable defaults
ClusteringParameters ();
};
/** clustering based on assignment - centroid update iterations
*
* The clustering is based on an Index object that assigns training
* points to the centroids. Therefore, at each iteration the centroids
* are added to the index.
*
* On output, the centoids table is set to the latest version
* of the centroids and they are also added to the index. If the
* centroids table it is not empty on input, it is also used for
* initialization.
*
* To do several clusterings, just call train() several times on
* different training sets, clearing the centroid table in between.
*/
struct Clustering: ClusteringParameters {
typedef Index::idx_t idx_t;
size_t d; ///< dimension of the vectors
size_t k; ///< nb of centroids
/// centroids (k * d)
std::vector<float> centroids;
/// objective values (sum of distances reported by index) over
/// iterations
std::vector<float> obj;
/// the only mandatory parameters are k and d
Clustering (int d, int k);
Clustering (int d, int k, const ClusteringParameters &cp);
/// Index is used during the assignment stage
virtual void train (idx_t n, const float * x, faiss::Index & index);
/// Post-process the centroids after each centroid update.
/// includes optional L2 normalization and nearest integer rounding
void post_process_centroids ();
virtual ~Clustering() {}
};
/** simplified interface
*
* @param d dimension of the data
* @param n nb of training vectors
* @param k nb of output centroids
* @param x training set (size n * d)
* @param centroids output centroids (size k * d)
* @return final quantization error
*/
float kmeans_clustering (size_t d, size_t n, size_t k,
const float *x,
float *centroids);
}
#endif