###Index
- Data Science Introduction
- [Data Processing] (#big-data-processing)
- [Data Analysis] (#big-data-analysis)
- [Fundamentals] (#fundamentals)
- [Network Analysis] (#network-analysis)
- [Statistics] (#statistics)
- [Data Mining] (#data-mining)
- [Machine Learning] (#machine-learning)
- [Data Science Application] (#big-data-application)
- [Data Visualization] (#data-visualization)
- [Uncategorized] (#uncategorized)
- [MOOCs about Data Science] (#moocs)
###Data Science Introduction
- [Big Data Now: 2012 Edition] (http://www.amazon.com/Big-Data-Now-2012-Edition-ebook/dp/B0097E4EBQ) - O'Reilly Media Inc. -
Beginner
- [Data Science: An Introduction] (http://en.wikibooks.org/wiki/Data_Science:_An_Introduction) - Wikibook -
Beginner
- [Disruptive Possibilities: How Big Data Changes Everything] (http://www.amazon.com/Disruptive-Possibilities-Data-Changes-Everything-ebook/dp/B00CLH387W) - Jeffrey Needham -
Beginner
- Introduction to Data Science - Jeffery Stanton -
Beginner
- [Real-Time Big Data Analytics: Emerging Architecture] (http://www.amazon.com/Real-Time-Big-Data-Analytics-Architecture-ebook/dp/B00DO33RSW) - Mike Barlow -
Beginner
- [The Evolution of Data Products] (http://www.amazon.com/The-Evolution-Data-Products-ebook/dp/B005QEKQUY/ref=sr_1_63?s=digital-text&ie=UTF8&qid=1351898530&sr=1-63) - Mike Loukides -
Beginner
- [The Promise and Peril of Big Data] (http://www.aspeninstitute.org/sites/default/files/content/docs/pubs/The_Promise_and_Peril_of_Big_Data.pdf) - David Bollier -
Beginner
###Data Processing
- [Data-Intensive Text Processing with MapReduce] (http://lintool.github.io/MapReduceAlgorithms/MapReduce-book-final.pdf) - Jimmy Lin and Chris Dyer -
Intermediate
###Data Analysis ####Fundamentals
- [Fundamental Numerical Methods and Data Analysis] (http://ads.harvard.edu/books/1990fnmd.book/) - George W. Collins -
Beginner
- [Introduction to Metadata] (http://www.getty.edu/research/publications/electronic_publications/intrometadata/index.html) - Murtha Baca -
Beginner
- [Introduction to R - Notes on R: A Programming Environment for Data Analysis and Graphics] (http://cran.r-project.org/doc/manuals/R-intro.pdf) - W. N. Venables, D. M. Smith, and the R Core Team -
Beginner
- [Modeling with Data: Tools and Techniques for Scientific Computing] (http://modelingwithdata.org/about_the_book.html) - Ben Klemens -
Beginner
####Network Analysis
- [Introduction to Social Network Methods] (http://faculty.ucr.edu/~hanneman/nettext/) - Robert A. Hanneman and Mark Riddle -
Intermediate
- [Networks, Crowds, and Markets: Reasoning About a Highly Connected World] (http://www.cs.cornell.edu/home/kleinber/networks-book/) - David Easley and Jon Kleinberg -
Intermediate
- [Network Science] (http://barabasilab.neu.edu/networksciencebook/downlPDF.html) - Sarah Morrison -
Beginner
- [The Wealth of Networks] (http://www.benkler.org/Benkler_Wealth_Of_Networks.pdf) - Yochai Benkler -
Beginner
####Statistics
- [Advanced Data Analysis from an Elementary Point of View] (http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf) - Cosma Rohilla Shalizi -
Veternan
- [An Introduction to R] (http://cran.r-project.org/doc/manuals/R-intro.pdf) - W. N. Venables, D. M. Smith, and the R Core Team -
Beginner
- [Analyzing Linguistic Data: a practical introduction to statistics] (http://www.ualberta.ca/~baayen/publications/baayenCUPstats.pdf) - R. H. Baayan -
Beginner
- [Applied Data Science] (http://columbia-applied-data-science.github.io/appdatasci.pdf) - Ian Langmore and Daniel Krasner -
Intermediate
- [Concepts and Applications of Inferential Statistics] (http://vassarstats.net/textbook/) - Richard Lowry -
Beginner
- [Forecasting: Principles and Practice] (https://www.otexts.org/fpp/) - Rob J. Hyndman and George Athanasopoulos -
Intermediate
- [Introduction to Probability] (http://www.math.umass.edu/~lavine/Book/book.html) - Charles M. Grinstead and J. Laurie Snell -
Beginner
- [Introduction to Statistical Thought] (http://www.math.umass.edu/~lavine/Book/book.pdf) - Michael Lavine -
Beginner
- [OpenIntro Statistics - Second Edition] (http://www.openintro.org/stat/textbook.php) - David M. Diez, Christopher D. Barr, and Mine Cetinkaya-Rundel -
Beginner
- [simpleR - Using R for Introductory Statistics] (http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf) - John Verzani -
Beginner
- [Statistics] (http://upload.wikimedia.org/wikipedia/commons/8/82/Statistics.pdf) -
Beginner
- [Think Stats: Probability and Statistics for Programmers] (http://www.greenteapress.com/thinkstats/thinkstats.pdf) - Allen B. Downey -
Beginner
####Data Mining
- [Data Mining and Analysis: Fundamental Concepts and Algorithms] (http://www2.dcc.ufmg.br/livros/miningalgorithms/files/pdf/dmafca.pdf) - Mohammed J. Zaki and Wagner Meira Jr. -
Intermediate
- [Data Mining and Knowledge Discovery in Real Life Applications] (http://www.intechopen.com/books/data_mining_and_knowledge_discovery_in_real_life_applications) - Julio Ponce and Adem Karahoca -
Beginner
- [Data Mining for Social Network Data] (http://link.springer.com/book/10.1007%2F978-1-4419-6287-4) - Springer -
Veteran
- [Mining of Massive Datasets] (http://infolab.stanford.edu/~ullman/mmds/book.pdf) - Anand Rajaraman, Jure Leskovec, and Jeffrey D. Ullman -
Intermediate
- [Knowledge-Oriented Applications in Data Mining] (http://www.intechopen.com/books/knowledge-oriented-applications-in-data-mininge) - Kimito Funatsu -
Intermediate
- [New Fundamental Technologies in Data Mining] (http://www.intechopen.com/books/new-fundamental-technologies-in-data-mining) - Kimito Funatsu -
Intermediate
- [R and Data Mining: Examples and Case Studies] (http://cran.r-project.org/doc/contrib/Zhao_R_and_data_mining.pdf) - Yanchang Zhao -
Beginner
- [The Elements of Statistical Learning] (http://statweb.stanford.edu/~tibs/ElemStatLearn/) - Trevor Hastie, Robert Tibshirani, and Jerome Friedman -
Intermediate
- [Theory and Applications for Advanced Text Mining] (http://www.intechopen.com/books/theory-and-applications-for-advanced-text-mining) - Shigeaki Sakurai -
Intermediate
####Machine Learning
- [A Course in Machine Learning] (http://ciml.info/) - Hal Daume -
Beginner
- [A First Encounter with Machine Learning] (https://www.ics.uci.edu/~welling/teaching/273ASpring10/IntroMLBook.pdf) - Max Welling -
Beginner
- [Bayesian Reasoning and Machine Learning] (http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/031013.pdf) - David Barber -
Veteran
- [Gaussian Processes for Machine Learning] (http://www.gaussianprocess.org/gpml/chapters/) - Carl Edward Rasmussen and Christopher K. I. Williams -
Veteran
- [Introduction to Machine Learning] (http://alex.smola.org/drafts/thebook.pdf) - Alex Smola and S.V.N. Vishwanathan -
Intermediate
- [Probabilistic Programming & Bayesian Methods for Hackers] (http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/) - Cam Davidson-Pilon (main author) -
Intermediate
- [The LION Way: Machine Learning plus Intelligent Optimization] (http://www.lionsolver.com/LIONbook/) - Robert Battiti and Mauro Brunato -
Intermediate
- [Thinking Bayes] (http://www.greenteapress.com/thinkbayes/) - Allen B. Downey -
Beginner
###Data Science Application ####Information Retrieval
- [Introduction to Information Retrival] (http://nlp.stanford.edu/IR-book/) - Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze -
Intermediate
####Data Visualization
- [Interactive Data Visualization for the Web] (http://chimera.labs.oreilly.com/books/1230000000345/index.html) - Scott Murray -
Beginner
###Uncategorized
- [Data Journalism Handbook] (http://datajournalismhandbook.org/1.0/en/) - Jonathan Gray, Liliana Bounegru, and Lucy Chambers -
Beginner
- [Building Data Science Teams] (http://assets.en.oreilly.com/1/eventseries/23/Building-Data-Science-Teams.pdf) - DJ Patil -
Beginner
- [Information Theory, Inference, and Learning Algorithms] (http://www.inference.phy.cam.ac.uk/itprnn/book.html) - David MacKay -
Intermediate
- [Mathematics for Computer Science] (http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/MIT6_042JF10_notes.pdf) - Eric Lehman, Thomas Leighton, and Albert R. Meyer -
Beginner
- [The Field Guide to Data Science] (http://www.boozallen.com/media/file/The-Field-Guide-to-Data-Science.pdf) -
Beginner
###MOOCs about Data Science
- [Data Mining with Weka] (http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/) - Ian H. Witten -
Intermediate
- [Introduction to Data Science] (https://class.coursera.org/datasci-001/class) - Bill Howe (Coursera) -
Beginner
- [Introduction to Hadoop and MapReduce] (https://www.udacity.com/course/ud617) - Udacity -
Beginner
- [Machine Learning] (https://class.coursera.org/ml-003/class) - Andrew Ng (Coursera) -
Beginner
- [Machine Learning Foundatiaons (taught in Chinese)] (https://class.coursera.org/ntumlone-001) - Hsuan-Tien Lin -
Beginner
- [Machine Learning Video Library] (http://work.caltech.edu/library/#!?goback=.gde_35222_member_5810981726511443971) - Yaser Abu-Mostafa -
Intermediate
- [Natural Language Processing] (https://class.coursera.org/nlp/lecture/preview) - Dan Jurafsky and Christopher Manning (Coursera) -
Intermediate
- [Social and Economic Networks: Models and Analysis] (https://class.coursera.org/networksonline-001/class) - Matthew O. Jackson (Coursera) -
Intermediate
- [Social Network Analysis] (https://class.coursera.org/sna-003/class) - Lada Adamic (Coursera) -
Intermediate