-
Notifications
You must be signed in to change notification settings - Fork 162
/
convert_torch.py
314 lines (284 loc) · 13 KB
/
convert_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from __future__ import print_function
import os
import math
import torch
import argparse
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.legacy.nn as lnn
import torch.nn.functional as F
from functools import reduce
from torch.autograd import Variable
from torch.utils.serialization import load_lua
class LambdaBase(nn.Sequential):
def __init__(self, fn, *args):
super(LambdaBase, self).__init__(*args)
self.lambda_func = fn
def forward_prepare(self, input):
output = []
for module in self._modules.values():
output.append(module(input))
return output if output else input
class Lambda(LambdaBase):
def forward(self, input):
return self.lambda_func(self.forward_prepare(input))
class LambdaMap(LambdaBase):
def forward(self, input):
# result is Variables list [Variable1, Variable2, ...]
return list(map(self.lambda_func,self.forward_prepare(input)))
class LambdaReduce(LambdaBase):
def forward(self, input):
# result is a Variable
return reduce(self.lambda_func,self.forward_prepare(input))
def copy_param(m,n):
if m.weight is not None: n.weight.data.copy_(m.weight)
if m.bias is not None: n.bias.data.copy_(m.bias)
if hasattr(n,'running_mean'): n.running_mean.copy_(m.running_mean)
if hasattr(n,'running_var'): n.running_var.copy_(m.running_var)
def add_submodule(seq, *args):
for n in args:
seq.add_module(str(len(seq._modules)),n)
def lua_recursive_model(module,seq):
for m in module.modules:
name = type(m).__name__
real = m
if name == 'TorchObject':
name = m._typename.replace('cudnn.','')
m = m._obj
if name == 'SpatialConvolution' or name == 'nn.SpatialConvolutionMM':
if not hasattr(m,'groups') or m.groups is None: m.groups=1
n = nn.Conv2d(m.nInputPlane,m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),1,m.groups,bias=(m.bias is not None))
copy_param(m,n)
add_submodule(seq,n)
elif name == 'SpatialBatchNormalization':
n = nn.BatchNorm2d(m.running_mean.size(0), m.eps, m.momentum, m.affine)
copy_param(m,n)
add_submodule(seq,n)
elif name == 'VolumetricBatchNormalization':
n = nn.BatchNorm3d(m.running_mean.size(0), m.eps, m.momentum, m.affine)
copy_param(m, n)
add_submodule(seq, n)
elif name == 'ReLU':
n = nn.ReLU()
add_submodule(seq,n)
elif name == 'Sigmoid':
n = nn.Sigmoid()
add_submodule(seq,n)
elif name == 'SpatialMaxPooling':
n = nn.MaxPool2d((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),ceil_mode=m.ceil_mode)
add_submodule(seq,n)
elif name == 'SpatialAveragePooling':
n = nn.AvgPool2d((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),ceil_mode=m.ceil_mode)
add_submodule(seq,n)
elif name == 'SpatialUpSamplingNearest':
n = nn.UpsamplingNearest2d(scale_factor=m.scale_factor)
add_submodule(seq,n)
elif name == 'View':
n = Lambda(lambda x: x.view(x.size(0),-1))
add_submodule(seq,n)
elif name == 'Reshape':
n = Lambda(lambda x: x.view(x.size(0),-1))
add_submodule(seq,n)
elif name == 'Linear':
# Linear in pytorch only accept 2D input
n1 = Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x )
n2 = nn.Linear(m.weight.size(1),m.weight.size(0),bias=(m.bias is not None))
copy_param(m,n2)
n = nn.Sequential(n1,n2)
add_submodule(seq,n)
elif name == 'Dropout':
m.inplace = False
n = nn.Dropout(m.p)
add_submodule(seq,n)
elif name == 'SoftMax':
n = nn.Softmax()
add_submodule(seq,n)
elif name == 'Identity':
n = Lambda(lambda x: x) # do nothing
add_submodule(seq,n)
elif name == 'SpatialFullConvolution':
n = nn.ConvTranspose2d(m.nInputPlane,m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),(m.adjW,m.adjH))
copy_param(m,n)
add_submodule(seq,n)
elif name == 'VolumetricFullConvolution':
n = nn.ConvTranspose3d(m.nInputPlane,m.nOutputPlane,(m.kT,m.kW,m.kH),(m.dT,m.dW,m.dH),(m.padT,m.padW,m.padH),(m.adjT,m.adjW,m.adjH),m.groups)
copy_param(m,n)
add_submodule(seq, n)
elif name == 'SpatialReplicationPadding':
n = nn.ReplicationPad2d((m.pad_l,m.pad_r,m.pad_t,m.pad_b))
add_submodule(seq,n)
elif name == 'SpatialReflectionPadding':
n = nn.ReflectionPad2d((m.pad_l,m.pad_r,m.pad_t,m.pad_b))
add_submodule(seq,n)
elif name == 'Copy':
n = Lambda(lambda x: x) # do nothing
add_submodule(seq,n)
elif name == 'Narrow':
n = Lambda(lambda x,a=(m.dimension,m.index,m.length): x.narrow(*a))
add_submodule(seq,n)
elif name == 'SpatialCrossMapLRN':
lrn = lnn.SpatialCrossMapLRN(m.size,m.alpha,m.beta,m.k)
n = Lambda(lambda x,lrn=lrn: Variable(lrn.forward(x.data)))
add_submodule(seq,n)
elif name == 'Sequential':
n = nn.Sequential()
lua_recursive_model(m,n)
add_submodule(seq,n)
elif name == 'ConcatTable': # output is list
n = LambdaMap(lambda x: x)
lua_recursive_model(m,n)
add_submodule(seq,n)
elif name == 'CAddTable': # input is list
n = LambdaReduce(lambda x,y: x+y)
add_submodule(seq,n)
elif name == 'Concat':
dim = m.dimension
n = LambdaReduce(lambda x,y,dim=dim: torch.cat((x,y),dim))
lua_recursive_model(m,n)
add_submodule(seq,n)
elif name == 'TorchObject':
print('Not Implement',name,real._typename)
else:
print('Not Implement',name)
def lua_recursive_source(module):
s = []
for m in module.modules:
name = type(m).__name__
real = m
if name == 'TorchObject':
name = m._typename.replace('cudnn.','')
m = m._obj
if name == 'SpatialConvolution' or name == 'nn.SpatialConvolutionMM':
if not hasattr(m,'groups') or m.groups is None: m.groups=1
s += ['nn.Conv2d({},{},{},{},{},{},{},bias={}),#Conv2d'.format(m.nInputPlane,
m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),1,m.groups,m.bias is not None)]
elif name == 'SpatialBatchNormalization':
s += ['nn.BatchNorm2d({},{},{},{}),#BatchNorm2d'.format(m.running_mean.size(0), m.eps, m.momentum, m.affine)]
elif name == 'VolumetricBatchNormalization':
s += ['nn.BatchNorm3d({},{},{},{}),#BatchNorm3d'.format(m.running_mean.size(0), m.eps, m.momentum, m.affine)]
elif name == 'ReLU':
s += ['nn.ReLU()']
elif name == 'Sigmoid':
s += ['nn.Sigmoid()']
elif name == 'SpatialMaxPooling':
s += ['nn.MaxPool2d({},{},{},ceil_mode={}),#MaxPool2d'.format((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),m.ceil_mode)]
elif name == 'SpatialAveragePooling':
s += ['nn.AvgPool2d({},{},{},ceil_mode={}),#AvgPool2d'.format((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),m.ceil_mode)]
elif name == 'SpatialUpSamplingNearest':
s += ['nn.UpsamplingNearest2d(scale_factor={})'.format(m.scale_factor)]
elif name == 'View':
s += ['Lambda(lambda x: x.view(x.size(0),-1)), # View']
elif name == 'Reshape':
s += ['Lambda(lambda x: x.view(x.size(0),-1)), # Reshape']
elif name == 'Linear':
s1 = 'Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x )'
s2 = 'nn.Linear({},{},bias={})'.format(m.weight.size(1),m.weight.size(0),(m.bias is not None))
s += ['nn.Sequential({},{}),#Linear'.format(s1,s2)]
elif name == 'Dropout':
s += ['nn.Dropout({})'.format(m.p)]
elif name == 'SoftMax':
s += ['nn.Softmax()']
elif name == 'Identity':
s += ['Lambda(lambda x: x), # Identity']
elif name == 'SpatialFullConvolution':
s += ['nn.ConvTranspose2d({},{},{},{},{},{})'.format(m.nInputPlane,
m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),(m.adjW,m.adjH))]
elif name == 'VolumetricFullConvolution':
s += ['nn.ConvTranspose3d({},{},{},{},{},{},{})'.format(m.nInputPlane,
m.nOutputPlane,(m.kT,m.kW,m.kH),(m.dT,m.dW,m.dH),(m.padT,m.padW,m.padH),(m.adjT,m.adjW,m.adjH),m.groups)]
elif name == 'SpatialReplicationPadding':
s += ['nn.ReplicationPad2d({})'.format((m.pad_l,m.pad_r,m.pad_t,m.pad_b))]
elif name == 'SpatialReflectionPadding':
s += ['nn.ReflectionPad2d({})'.format((m.pad_l,m.pad_r,m.pad_t,m.pad_b))]
elif name == 'Copy':
s += ['Lambda(lambda x: x), # Copy']
elif name == 'Narrow':
s += ['Lambda(lambda x,a={}: x.narrow(*a))'.format((m.dimension,m.index,m.length))]
elif name == 'SpatialCrossMapLRN':
lrn = 'lnn.SpatialCrossMapLRN(*{})'.format((m.size,m.alpha,m.beta,m.k))
s += ['Lambda(lambda x,lrn={}: Variable(lrn.forward(x.data)))'.format(lrn)]
elif name == 'Sequential':
s += ['nn.Sequential( # Sequential']
s += lua_recursive_source(m)
s += [')']
elif name == 'ConcatTable':
s += ['LambdaMap(lambda x: x, # ConcatTable']
s += lua_recursive_source(m)
s += [')']
elif name == 'CAddTable':
s += ['LambdaReduce(lambda x,y: x+y), # CAddTable']
elif name == 'Concat':
dim = m.dimension
s += ['LambdaReduce(lambda x,y,dim={}: torch.cat((x,y),dim), # Concat'.format(m.dimension)]
s += lua_recursive_source(m)
s += [')']
else:
s += '# ' + name + ' Not Implement,\n'
s = map(lambda x: '\t{}'.format(x),s)
return s
def simplify_source(s):
s = map(lambda x: x.replace(',(1, 1),(0, 0),1,1,bias=True),#Conv2d',')'),s)
s = map(lambda x: x.replace(',(0, 0),1,1,bias=True),#Conv2d',')'),s)
s = map(lambda x: x.replace(',1,1,bias=True),#Conv2d',')'),s)
s = map(lambda x: x.replace(',bias=True),#Conv2d',')'),s)
s = map(lambda x: x.replace('),#Conv2d',')'),s)
s = map(lambda x: x.replace(',1e-05,0.1,True),#BatchNorm2d',')'),s)
s = map(lambda x: x.replace('),#BatchNorm2d',')'),s)
s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#MaxPool2d',')'),s)
s = map(lambda x: x.replace(',ceil_mode=False),#MaxPool2d',')'),s)
s = map(lambda x: x.replace('),#MaxPool2d',')'),s)
s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#AvgPool2d',')'),s)
s = map(lambda x: x.replace(',ceil_mode=False),#AvgPool2d',')'),s)
s = map(lambda x: x.replace(',bias=True)),#Linear',')), # Linear'),s)
s = map(lambda x: x.replace(')),#Linear',')), # Linear'),s)
s = map(lambda x: '{},\n'.format(x),s)
s = map(lambda x: x[1:],s)
s = reduce(lambda x,y: x+y, s)
return s
def torch_to_pytorch(t7_filename,outputname=None):
model = load_lua(t7_filename,unknown_classes=True)
if type(model).__name__=='hashable_uniq_dict': model=model.model
model.gradInput = None
slist = lua_recursive_source(lnn.Sequential().add(model))
s = simplify_source(slist)
header = '''
import torch
import torch.nn as nn
import torch.legacy.nn as lnn
from functools import reduce
from torch.autograd import Variable
class LambdaBase(nn.Sequential):
def __init__(self, fn, *args):
super(LambdaBase, self).__init__(*args)
self.lambda_func = fn
def forward_prepare(self, input):
output = []
for module in self._modules.values():
output.append(module(input))
return output if output else input
class Lambda(LambdaBase):
def forward(self, input):
return self.lambda_func(self.forward_prepare(input))
class LambdaMap(LambdaBase):
def forward(self, input):
return list(map(self.lambda_func,self.forward_prepare(input)))
class LambdaReduce(LambdaBase):
def forward(self, input):
return reduce(self.lambda_func,self.forward_prepare(input))
'''
varname = t7_filename.replace('.t7','').replace('.','_').replace('-','_')
s = '{}\n\n{} = {}'.format(header,varname,s[:-2])
if outputname is None: outputname=varname
with open(outputname+'.py', "w") as pyfile:
pyfile.write(s)
n = nn.Sequential()
lua_recursive_model(model,n)
torch.save(n.state_dict(),outputname+'.pth')
parser = argparse.ArgumentParser(description='Convert torch t7 model to pytorch')
parser.add_argument('--model','-m', type=str, required=True,
help='torch model file in t7 format')
parser.add_argument('--output', '-o', type=str, default=None,
help='output file name prefix, xxx.py xxx.pth')
args = parser.parse_args()
torch_to_pytorch(args.model,args.output)