-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssn.m
87 lines (77 loc) · 3.33 KB
/
ssn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
function [q,output] = ssn(q,d)
%SSN semismooth Newton method
% [Q,OUTPUT] = SSN(Q,D) computes the optimal dual variable Q from a given
% initial point using a semismooth Newton method. The structure D contains
% the problem parameters, while OUTPUT is a structure containing the
% following data:
% j: optimal value,
% g0: residual norm in optimality conditions
% ssnit: number of Newton steps
% cgit: number of conjugate gradient steps in last Newton iteration
% flag: 0 - converged with relative tolerance, 1 - converged with
% absolute tolerance, 2 - diverged (too many iterations)
%
% March 23, 2015 Armin Rund <[email protected]>
% Christian Clason <[email protected]>
% Richard C. Barnard <[email protected]>
fprintf('Starting SSN for gamma=%1.0e: (CG flag 0: converged, 1: max iterations)\n',d.gamma);
fprintf('Iter objective |I| _{1,2,3} | normgrad dAS | stepsize flag relres CGit\n');
%% semismooth Newton iteration
ssnit = 0; GGold = 1e99; as_old = zeros(d.Nc,1); tau = 1;
while ssnit <= d.maxit_ssn
% compute new gradient
[j,G,~,D,d_vec,as] = objfun(q,d);
if ssnit == 0
G0 = sqrt(d.tau)*norm(G); output.g0 = G0; output.j0 = j;
flag = 0; cgit = 0;
end
% line search on gradient norm (correctly scaled discrete norm)
GG = sqrt(d.tau)*norm(G);
if GG >= GGold % if no decrease: backtrack (never on iteration 1)
tau = tau/2;
q = q - tau*dq;
if tau < 1e-7 % if step too small: terminate Newton iteration
fprintf('\n#### not converged: step size too small\n');
output.flag = 3;
break;
else % else: bypass rest of loop; backtrack further
continue;
end
end
% compute statistics and change in active sets
I_vec = histc(d_vec,1:d.Nf); % number of points in each active set
as_change = nnz(abs(as - as_old)>0.5); % number of points that changed
% output iteration details
fprintf('%3d: %1.5e %3d %3d %3d | %1.3e ', ...
ssnit, j, I_vec(1), I_vec(2), I_vec(3), GG);
if ssnit > 0
fprintf('%3d | %1.1e %d %1.1e %d\n', as_change, tau, flag, relres, cgit);
else
fprintf('\n');
end
% terminate Newton?
if (GG < d.reltol_ssn*sqrt(G0)) && (as_change == 0) % convergence (relative norm)
fprintf('\n#### converged with relative tol: |grad|<=%1.1e |grad0|\n',d.reltol_ssn);
output.flag = 0;
break;
elseif (GG < d.abstol_ssn) && (as_change == 0) % convergence (absolute norm)
fprintf('\n#### converged with absolute tol: |grad|<=%1.1e\n',d.abstol_ssn);
output.flag = 1;
break;
elseif ssnit == d.maxit_ssn % failure, too many iterations
fprintf('\n#### not converged: too many iterations\n');
output.flag = 2;
break;
end
% otherwise update information, continue
ssnit = ssnit+1; GGold = GG; as_old = as; tau = 1;
% compute Newton step, update
DG = @(dq) applyHess(dq,D,d); % Hessian
[dq, flag, relres, cgit] = pcg_ip(DG, -G, d.reltol_cg, d.maxit_cg, D);
q = q + dq;
end
%% output
output.j = j;
output.g = GG;
output.ssnit = ssnit;
output.cgit = cgit;