forked from zizhaozhang/unet-tensorflow-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·134 lines (116 loc) · 5.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
'''
* @author [Zizhao Zhang]
* @email [[email protected]]
* @create date 2017-05-19 03:06:32
* @modify date 2017-05-19 03:06:32
* @desc [description]
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
SEED=0 # set set to allow reproducing runs
import numpy as np
np.random.seed(SEED)
import tensorflow as tf
tf.set_random_seed(SEED)
import os, shutil
from model import UNet
from utils import dice_coef
from loader import dataLoader
from utils import VIS, mean_IU
# configure args
from opts import *
from opts import dataset_mean, dataset_std # set them in opts
# save and compute metrics
vis = VIS(save_path=opt.checkpoint_path)
# configuration session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
''' Users define data loader (with train and test) '''
img_shape = [opt.imSize, opt.imSize]
train_generator, train_samples = dataLoader(opt.data_path+'/train/', opt.batch_size,img_shape, mean=dataset_mean, std=dataset_std)
test_generator, test_samples = dataLoader(opt.data_path+'/val/', 1, img_shape, train_mode=False,mean=dataset_mean, std=dataset_std)
opt.iter_epoch = int(train_samples)
# define input holders
label = tf.placeholder(tf.int32, shape=[None]+img_shape)
# define model
with tf.name_scope('unet'):
model = UNet().create_model(img_shape=img_shape+[3], num_class=opt.num_class)
img = model.input
pred = model.output
# define loss
with tf.name_scope('cross_entropy'):
cross_entropy_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=label, logits=pred))
# define optimizer
global_step = tf.Variable(0, name='global_step', trainable=False)
with tf.name_scope('learning_rate'):
learning_rate = tf.train.exponential_decay(opt.learning_rate, global_step,
opt.iter_epoch, opt.lr_decay, staircase=True)
train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cross_entropy_loss, global_step=global_step)
# compute dice score for simple evaluation during training
# with tf.name_scope('dice_eval'):
# dice_evaluator = tf.reduce_mean(dice_coef(label, pred))
''' Tensorboard visualization '''
# cleanup pervious info
if opt.load_from_checkpoint == '':
cf = os.listdir(opt.checkpoint_path)
for item in cf:
if 'event' in item:
os.remove(os.path.join(opt.checkpoint_path, item))
# define summary for tensorboard
tf.summary.scalar('cross_entropy_loss', cross_entropy_loss)
tf.summary.scalar('learning_rate', learning_rate)
summary_merged = tf.summary.merge_all()
# define saver
train_writer = tf.summary.FileWriter(opt.checkpoint_path, sess.graph)
saver = tf.train.Saver() # must be added in the end
''' Main '''
tot_iter = opt.iter_epoch * opt.epoch
init_op = tf.global_variables_initializer()
sess.run(init_op)
with sess.as_default():
# restore from a checkpoint if exists
# the name_scope can not change
if opt.load_from_checkpoint != '':
try:
saver.restore(sess, opt.load_from_checkpoint)
print ('--> load from checkpoint '+opt.load_from_checkpoint)
except:
print ('unable to load checkpoint ...' + str(e))
# debug
start = global_step.eval()
for it in range(start, tot_iter):
if it % opt.iter_epoch == 0 or it == start:
saver.save(sess, opt.checkpoint_path+'model', global_step=global_step)
print ('save a checkpoint at '+ opt.checkpoint_path+'model-'+str(it))
print ('start testing {} samples...'.format(test_samples))
for ti in range(test_samples):
x_batch, y_batch = next(test_generator)
# tensorflow wants a different tensor order
feed_dict = {
img: x_batch,
label: y_batch,
}
loss, pred_logits = sess.run([cross_entropy_loss, pred], feed_dict=feed_dict)
pred_map_batch = np.argmax(pred_logits, axis=3)
# import pdb; pdb.set_trace()
for pred_map, y in zip(pred_map_batch, y_batch):
score = vis.add_sample(pred_map, y)
vis.compute_scores(suffix=it)
x_batch, y_batch = next(train_generator)
feed_dict = { img: x_batch,
label: y_batch
}
_, loss, summary, lr, pred_logits = sess.run([train_step,
cross_entropy_loss,
summary_merged,
learning_rate,
pred
], feed_dict=feed_dict)
global_step.assign(it).eval()
train_writer.add_summary(summary, it)
pred_map = np.argmax(pred_logits[0], axis=2)
score, _ = mean_IU(pred_map, y_batch[0])
if it % 20 == 0 :
print ('[iter %d, epoch %.3f]: lr=%f loss=%f, mean_IU=%f' % (it, float(it)/opt.iter_epoch, lr, loss, score))