forked from zizhaozhang/unet-tensorflow-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopts.py
executable file
·37 lines (31 loc) · 1.5 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
'''
* @author [Zizhao Zhang]
* @email [[email protected]]
* @create date 2017-05-25 02:20:01
* @modify date 2017-05-25 02:20:01
* @desc [description]
'''
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=5, help='input batch size')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='learning rate')
parser.add_argument('--lr_decay', type=float, default=0.9, help='learning rate decay')
parser.add_argument('--epoch', type=int, default=50, help='# of epochs')
parser.add_argument('--imSize', type=int, default=256, help='then crop to this size')
parser.add_argument('--iter_epoch', type=int, default=0, help='# of iteration as an epoch')
parser.add_argument('--num_class', type=int, default=2, help='# of classes')
parser.add_argument('--checkpoint_path', type=str, default='', help='where checkpoint saved')
parser.add_argument('--data_path', type=str, default='', help='where dataset saved. See loader.py to know how to organize the dataset folder')
parser.add_argument('--load_from_checkpoint', type=str, default='', help='where checkpoint saved')
opt = parser.parse_args()
args = vars(opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
if opt.checkpoint_path != '' and not os.path.isdir(opt.checkpoint_path):
os.mkdir(opt.checkpoint_path)
# hardcode here
dataset_mean = [0.5,0.5,0.5]
dataset_std = [0.5,0.5,0.5]