forked from siddsaxena24/Mixed_anova
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitial_complete_mixedaov.R
259 lines (223 loc) · 8.77 KB
/
initial_complete_mixedaov.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
## Library Importing
library(tidyverse)
library(dplyr)
library(magrittr)
library(ggrepel)
library(ggpubr)
library(rstatix)
library(readxl)
# User Input:
filename <- "2020-01-07_tx03_DailyMeasures - Sheet1.csv"
data <- as_tibble(read.csv(filename))
first_date <- "2020-01-07"
# Please ensure:
# Date is given as month/day/year, and column is labelled "date"
# Treatment column is labelled as "treatment"
# Body mass column is labelled body_mass_g
# Subject column is labelled "sbj", and is
## Data tidying
# data <- data %>%
# gather(key = "date", value = c("mass", "treatment", 3:9))
# New Table will be given in:
# days time elapsed called "time_elapsed"
## Formatting Data
anova_general <- function(filename, data, first_date) {
dt_t_tm <- function (filename, orig_dt) {
data %<>%
mutate(date = as.POSIXct(date, format="%m/%d/%Y"))
## Use POSIXct for changing date from char to date
original_date <- as.Date(orig_dt)
time_elapsed <- difftime(data$date, original_date, units = 'days')
# Conversion from date points to time elapsed since original date in days
time_elapsed <- round(time_elapsed)
time_elapsed <- as.numeric(time_elapsed)
data_new <- data %>%
mutate(time_elapsed)
return(data_new)
# Use time_elapsed rounded
}
data_new <- dt_t_tm("2020-01-07_tx03_DailyMeasures - Sheet1.csv", first_date)
View(data_new)
## This is something to consider!! Take NOTE: THE FACTOR CONVERSION IS EXTREMELY SPECIFIC
# Step 1: Conversion to Factor
data_new <- data_new %>%
convert_as_factor(sbj, time_elapsed, treatment)
# Step 2 - Assumptions:
# Outlier Check:
# I want if no, proceed. If yes, then sidetrack and show outliers, offering deletion or inclusion
# Below Function tests for outliers.
# If outliers undetected, script proceeds
# If outliers detected, script presents outliers, and user is given option of elmiinating or keeping the outlier in their analysis
option_outliers <- function(data_new) {
outliers <- data_new %>%
identify_outliers(body_mass_g)
# Identifies outliers
if (nrow(outliers) > 0) {
# Tests if outliers were prodcued
cat("Outliers detected:\n")
print(outliers)
# Show outliers
cat("\nOptions:\n")
cat("1. Eliminate detected outliers\n")
cat("2. Keep detected outliers\n")
option <- as.integer(trimws(readline("Enter your choice (1 or 2): ")))
# Offer options for treatment
if (option == 1) {
data_no_outlier <- anti_join(data_new, outliers)
View(data_no_outlier)
assign('data_new', data_no_outlier, envir=.GlobalEnv)
}
# Recreate dataframe without outlier index. It will continue to be called data_new
else if (option == 2) {
message("Script will proceed!")
return(NULL)
# Return original data
}
}
else {
message("Script will proceed!")
return(NULL)
}
}
option_outliers(data_new)
# Normality
# Normality May need added check : Dataset greater than n=50?
# For now, stick with depiction of qqplot
check_normals <- function(data_new) {
p <- ggqqplot(data_new, "body_mass_g", ggtheme = theme_bw()) +
facet_grid(time_elapsed ~ treatment)
print(p)
cat("\nPlease see plot printed. Are you satisfied with Normality?:\n")
cat("1. Yes\n")
cat("2. No\n")
normals <- as.integer(trimws(readline("Enter your choice (1 or 2): ")))
if (normals == 1) {
message("Normality Assumption Satisfied")
}
if (normals == 2) {
message("The 2-way Mixed ANOVA is fairly robust even under slight normality violations. Depending on the perceived normality from the qqplot, you also have the option of continuing with this script. Otherwise, alternate statistical analysis may need to be considered")
}
}
check_normals(data_new)
# Homogeneity of Variance
check_variance <- function(data_new) {
levene <- data_new %>%
group_by(time_elapsed) %>%
levene_test(body_mass_g ~ treatment)
detected_rows <- levene %>%
filter(p < 0.05)
if (nrow(detected_rows) > 0) {
message("Levene Test Violation Detected:")
print(detected_rows)
message("This data does not pass the Levene Homogeneity of Variance Test. Alternate statistical analysis may need to be considered")
} else {
message("Levene Test Assumption Satisfied")
}
}
check_variance(data_new)
# Homogeneity of Covariance
check_covariance <- function(data_new){
cov <- box_m(data_new[, "body_mass_g", drop = FALSE], data_new$treatment)
print(cov)
if (cov$p.value < 0.001) {
message("This data does not pass the Box's M Homogeneity of Covariance Test. Alternate statistical analysis may need to be considered")
}
else {
message("Box's M Test Assumption Satisfied")
}
}
check_covariance(data_new)
run_anova <- function(data_new) {
## Applying Greenhouse-Geisser sphericity correction and Mauchly Test for Sphericity
res.aov <- anova_test(
data = data_new, dv = body_mass_g, wid = sbj,
between = treatment, within = time_elapsed
)
message("Mauchly Test internally applied in res.aov")
message("get_anova_table: the Greenhouse-Geisser sphericity correction is automatically applied to factors violating the sphericity assumption.")
aov <- get_anova_table(res.aov)
print(aov)
if (aov[1,6] == '*') {
message("Treatment Main Effect Detected")
}
if (aov[2,6] == '*') {
message("Time Elapsed Main Effect Detected")
}
if(aov[3,6] == '*') {
message("Interaction Between Treatment and Time Detected")
}
assign('aov', aov, envir=.GlobalEnv)
return(aov)
}
run_anova(data_new)
# Post Hoc
# Treatment Effects At Every Time Point
treat_maineffect<- function(data_new) {
one_way_test <- data_new %>%
group_by(time_elapsed) %>%
anova_test(dv = body_mass_g, wid = sbj, between = treatment) %>%
get_anova_table() %>%
adjust_pvalue(method = "bonferroni") %>%
as_tibble()
one_way_test
colnames(one_way_test)[7] <- "Significance"
# Find Signficance from dataframe. Below line builds a dataframe based only on significance.
# Then a row count is done to check if signficance is present
detected_sig <- subset(one_way_test, grepl("\\*", Significance))
print(one_way_test)
if (nrow(detected_sig) > 0) {
message("Signficiance in Treatment main effect was detected at certain time points")
message("Please see complete table above to record time points where signfificance was seen")
}
else {
message("No Significance was detected on body mass between treatments at any time point")
}
}
treat_maineffect(data_new)
## Pairwise Data frame Construction for Plotting
make_pairwise <- function(data_new) {
Max_mass <- data_new %>%
group_by(time_elapsed) %>%
summarize(max(body_mass_g))
# The above code generates a data frame for maximum body mass to be added to pairwise function.
# This is so that the mass function can be carried to significant dataframes and plotted later
pw <<- data_new %>%
group_by(time_elapsed) %>%
pairwise_t_test(body_mass_g ~ treatment, p.adjust.method = "bonferroni") %>%
add_column(yplacement = Max_mass$'max(body_mass_g)')
# this last line is for adding a coordinate for assisting in placement of significance labels
pw <- print(pw)
return(pw)
}
make_pairwise(data_new)
#NOTE: THERE IS POTENTIAL TO REPEAT THIS POST HOC TEST, BUT GROUPED BY BETWEEN VARIABLE AND MEASURING THE EFFECT OF TIM
## Use this pairwise dataframe to generate final boxplot
final_box <- function(pw) {
treatment_maineffect_p <- aov$'p'[1]
treatment_maineffect_p
## Asterix at significant time points from pairwise results
## After extracting each p-value to its corresponding time point and making a dataframe of it,
## use a new boxplot generation. In that, for geomtext, add it so that it is labelling these dataframes
singlesig <- pw %>%
filter(p.signif == "*") %>%
select(time_elapsed, p, yplacement)
## Above and below code blocks are for setting the y-value placement of the asterisk
doublesig <- pw %>%
filter(p.signif == "**") %>%
select(time_elapsed, p, yplacement)
fin_bxp <- ggboxplot(
data_new, x = "time_elapsed", y = "body_mass_g",
color = "treatment", palette = "jco") +
geom_text(x = max(as.numeric(data_new$time_elapsed)), y = min(data_new$body_mass_g),
label = sprintf("F(%.2f) = %.3f", aov$DFn[1], treatment_maineffect_p),
hjust = 1, vjust = 1, color = "red") +
geom_text(data = singlesig, aes(x=time_elapsed, y=yplacement, label = "*"), size = 5, hjust = 0.5, vjust = -0.8, color = "red") +
geom_text(data = doublesig, aes(x=time_elapsed, y=yplacement, label = "**"), size = 5, hjust = 0.5, vjust = -0.8, color = "red") +
labs(x = "Age (Days)", y = "Body Mass (g)") +
theme_minimal()
fin_bxp <- fin_bxp + expand_limits(y = 0)
fin_bxp
}
final_box(pw)
}
anova_general(filename, data, first_date)