-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathga_n.py
142 lines (120 loc) · 4.86 KB
/
ga_n.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import random
from deap import base
from deap import creator
from deap import tools
from deap import algorithms
from operators import crossovers as cross, mutations as mut
import problem
import numpy as np
from arguments import args
def add_individual(toolbox):
# generation functions
creator.create("FitnessMax", base.Fitness, weights=(-1.0,))
creator.create("Individual", np.ndarray, fitness=creator.FitnessMax)
toolbox.register("attr_int", np.random.randint, 0, 3)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_int, n=args.L)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
def add_selection(toolbox, mode):
if True:
toolbox.register("select", tools.selTournament, tournsize=3)
def add_crossover(toolbox, mode):
if mode == 'MERGING':
toolbox.register("mate", cross.merging)
elif mode == '1POINT':
toolbox.register("mate", tools.cxOnePoint)
elif mode == '2POINT':
toolbox.register("mate", tools.cxTwoPoint)
elif mode == 'CUPCAP':
toolbox.register("mate", cross.cupcap)
else:
toolbox.register("mate", cross.cross_none)
def add_mutation(toolbox, mode):
toolbox.register("mutate_custom", mut.custom)
if mode == 'SHAKING':
toolbox.register("mutate", mut.shaking)
elif mode == 'NRAND':
toolbox.register("mutate", mut.nrand)
elif mode == 'UNIFORM':
toolbox.register("mutate", tools.mutUniformInt, low=0, up=3, indpb=0.5)
else:
toolbox.register("mutate", mut.mut_none)
def add_replacement(toolbox, mode):
if mode == 'mu_lambda':
toolbox.register("replacement", algorithms.eaMuCommaLambda)
elif mode == 'mu_plus_lambda':
toolbox.register("replacement", algorithms.eaMuPlusLambda)
def configure_ga(toolbox, sel, cross, mut, repl):
add_selection(toolbox, sel)
add_crossover(toolbox, cross)
add_mutation(toolbox, mut)
add_replacement(toolbox, repl)
# Press the green button in the gutter to run the script.
def execute(toolbox, pop_size, fitness, cxpb=0.5, mutpb=0.2, max_iter=100):
pop = toolbox.population(n=pop_size)
toolbox.register("evaluate", fitness)
print(".")
# Evaluate the entire population
fitnesses = list(map(toolbox.evaluate, pop))
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
print(".")
for ind in pop:
toolbox.repair(ind)
# CXPB is the probability with which two individuals
# are crossed
#
# MUTPB is the probability for mutating an individual
# CXPB, MUTPB = 0.5, 0.2
# Extracting all the fitnesses of
fits = [ind.fitness.values[0] for ind in pop]
# Variable keeping track of the number of generations
g = 0
print(".")
print(max(fits))
# Begin the evolution
while g < max_iter: #max(fits) < 100 and g < max_iter:
# A new generation
g = g + 1
print("-- Generation %i --" % g)
# Select the next generation individuals
offspring = toolbox.select(pop, len(pop))
# Clone the selected individuals
offspring = list(map(toolbox.clone, offspring))
# Apply crossover and mutation on the offspring
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < cxpb:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < mutpb:
#toolbox.mutate(mutant)
toolbox.mutate_custom(mutant)
toolbox.repair(mutant)
del mutant.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
pop[:] = toolbox.select(pop + offspring, k=pop_size)
#pop[:] = offspring
# Gather all the fitnesses in one list and print the stats
fits = [ind.fitness.values[0] for ind in pop]
if g % 10 == 0:
print(" Sol size %s" % len(pop[0]))
length = len(pop)
mean = sum(fits) / length
sum2 = sum(x * x for x in fits)
std = abs(sum2 / length - mean ** 2) ** 0.5
print(" Min %s" % min(fits))
print(" Max %s" % max(fits))
print(" Avg %s" % mean)
print(" Std %s" % std)
return fits
def run(fitness, pop_size, sel, cross, mut, repl, cross_prob=0.5, mut_prob=0.2, max_iter=1000):
toolbox = base.Toolbox()
toolbox.register("repair", problem.repair, fitness=fitness)
add_individual(toolbox)
configure_ga(toolbox, sel, cross, mut, repl)
execute(toolbox, pop_size, fitness, cross_prob, mut_prob, max_iter)