forked from chbianco/GCAM-SoilC-Dynamics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Rmap_experimental_location.R
151 lines (126 loc) · 6.29 KB
/
Rmap_experimental_location.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#Making the rmap showing where experimental data is from
#Load packages
library(dplyr)
library(ggplot2)
library(rmap)
library(RColorBrewer)
library(graphics)
#Load GCAM data
soilC <- read.csv(file = 'Data/GCAM_soilC.csv')
timescales <- read.csv(file = 'Data/soil_timescales.csv')
glus <- read.csv(file = 'Data/GLU_codes.csv')
regions <- read.csv('Data/GCAM_regions.csv')
#Load experimental data
PostKwon <- read.csv(file= 'Data/Experimental Data.csv', na.strings = c("", "NA"))
Wei <- read.csv(file= 'Data/Wei et al Data.csv', na.strings = c("", "NA"))
#Join GLU codes with soilC data
soilC %>%
mutate(GLU_code = GLU) %>%
right_join(glus, by='GLU_code') %>%
right_join(regions, by='GCAM_region_ID') %>%
right_join(timescales, by='GCAM_region_ID')-> soilC_regions
#Simplify the data to just the stuff we'll need to compare with experimental data
soilC_regions %>%
select(Land_Type, soil_c, GLU_code, soilTimeScale, GCAM_region_ID, Basin_long_name) -> simple_soilC_regions
#Creating the Post & Kwon comparison data
PostKwon %>%
select(Initial_Land_Use, Final_Land_Use, GLU_code, GCAM_region_ID, Time, Exp_Rate) %>%
na.omit() %>%
mutate(Land_Type = Initial_Land_Use) %>%
right_join(simple_soilC_regions, by = c('GLU_code', 'Land_Type', 'GCAM_region_ID')) %>%
rename(initial_soil_c = soil_c) %>%
select(-Land_Type) %>%
mutate(Land_Type = Final_Land_Use) %>%
right_join(simple_soilC_regions, by = c('GLU_code', 'Land_Type', 'GCAM_region_ID')) %>%
rename(final_soil_c = soil_c) %>%
select(-Land_Type, -soilTimeScale.x, -Basin_long_name.x) %>%
rename(soilTimeScale = soilTimeScale.y, Basin_long_name = Basin_long_name.y) %>%
na.omit() %>%
mutate(GCAM_Rate = (final_soil_c - initial_soil_c)/soilTimeScale, Rate_Difference = Exp_Rate - GCAM_Rate,
Exp_k = -log(abs(Exp_Rate)*Time +1)/Time,
GCAM_k = -log(final_soil_c/initial_soil_c)/soilTimeScale,
source = 'Post & Kwon'
) %>%
#This next line corrects the sign of Exp_k--we had to take the absolute value to avoid NaNs, so this accounts for that
mutate(Exp_k = ifelse(sign(Exp_k) == sign(Exp_Rate), Exp_k*(-1), Exp_k)) -> PostKwon_Comparison
#Creating the Wei et al comparison data
Wei %>%
select(Initial_Land_Use, Final_Land_Use, GLU_code, GCAM_region_ID, OC_decrease, Time) %>%
na.omit() %>%
mutate(Land_Type = Initial_Land_Use) %>%
right_join(simple_soilC_regions, by = c('GLU_code', 'Land_Type', 'GCAM_region_ID')) %>%
rename(initial_soil_c = soil_c) %>%
select(-Land_Type) %>%
mutate(Land_Type = Final_Land_Use) %>%
right_join(simple_soilC_regions, by = c('GLU_code', 'Land_Type', 'GCAM_region_ID')) %>%
rename(final_soil_c = soil_c) %>%
select(-Land_Type, -soilTimeScale.x, -Basin_long_name.x) %>%
rename(soilTimeScale = soilTimeScale.y, Basin_long_name = Basin_long_name.y) %>%
na.omit() %>%
mutate(GCAM_Rate = (final_soil_c - initial_soil_c)/soilTimeScale,
GCAM_k = -log(final_soil_c/initial_soil_c)/soilTimeScale,
Exp_k = -log(1/((abs(OC_decrease)/100) +1))/Time,
source = 'Wei et al'
) %>%
#This next line corrects the sign of Exp_k--we had to take the absolute value to avoid NaNs, so this accounts for that
mutate(Exp_k = ifelse(sign(Exp_k) == sign(OC_decrease), Exp_k, Exp_k*(-1))) -> Wei_Comparison
#Merging the two papers...
#Now, we bind the two rows together. Because the Wei et al data doesn't have any raw rates, we won't include that data from Post & Kwon either
Full_Comparison <- bind_rows(
select(PostKwon_Comparison, -Exp_Rate, -Rate_Difference),
select(Wei_Comparison, -OC_decrease)
)
#EVERTHING ABOVE THIS JUST LOADS DATA!!!! DO NOT CHANGE!!!!
mapGCAMBasins -> mapGCAMBasins
#Creating the dataframe we will load into rmap
Full_Comparison %>%
select(GLU_code, Basin_long_name, GCAM_region_ID, source) %>%
count(Basin_long_name)-> location_freq
data.frame(subRegion = location_freq$Basin_long_name, value = location_freq$n) %>%
mutate(value = value * -1) -> location_freq_data
location_freq_data %>% mutate(value = value * -1) -> location_freq_data
#Now, we need to rename some basins...
new_basins <- function(land){
if(grepl('Arkansas_White_Red_Basin', land)){return('Arkansas_White_Red')}
else if(grepl('Brahmani', land)){return('Brahamani')}
else if(grepl('Great_Lakes_Basin', land)){return('Great_Lakes')}
else if(grepl('Hong_\\(Red_River\\)', land)){return('Hong_Red_River')}
else if(grepl('Lower_Colorado_River_Basin',land)){return('Lower_Colorado_River')}
else if(grepl('Mahanadi', land)){return('Mahandi')}
else if(grepl('Missouri_River_Basin', land)){return('Missouri_River')}
else if(grepl('New_England_Basin', land)){return('New_England')}
else if(grepl('Ohio_River_Basin', land) ){return('Ohio_River')}
else if(grepl('Pacific_Northwest_Basin', land) ){return('Pacific_Northwest')}
else if(grepl('South_Atlantic_Gulf_Basin', land) ){return('South_Atlantic_Gulf')}
else if(grepl('Upper_Mississippi_Basin', land) ){return('Upper_Mississippi')}
else{return(land)}
}
#Apply the function to the dataset
sapply(location_freq_data$subRegion, new_basins) -> better_basins
location_freq_data %>%
mutate(subRegion = better_basins) -> location_freq_data
#Making the map look pretty
# Build your palette
getcol = colorRampPalette(brewer.pal(6, 'Oranges'));
reds = getcol(5)[1:5];
my_pal <- c((reds))
pie(rep(1,length(my_pal)),label=names(my_pal),col=my_pal)
# Create a list of ranges and categorical color scales for each parameter
numeric2Cat_param <- list("param")
numeric2Cat_breaks <- (list(c(0, 1, 4, 10, 20, 30)))
numeric2Cat_labels <- (list(c('1',"1 to 4", "4 to 10", "10 to 20", "20 to 30")))
names(my_pal) <- unlist(numeric2Cat_labels)
pie(rep(1,length(my_pal)),label=names(my_pal),col=my_pal)
numeric2Cat_palette <- list(my_pal) # Can be a custom scale or an R brewer palette or an rmap palette
numeric2Cat_legendTextSize <- list(c(1))
numeric2Cat_list <-list(numeric2Cat_param = numeric2Cat_param,
numeric2Cat_breaks = numeric2Cat_breaks,
numeric2Cat_labels = numeric2Cat_labels,
numeric2Cat_palette = numeric2Cat_palette,
numeric2Cat_legendTextSize = numeric2Cat_legendTextSize); numeric2Cat_list
#Creating the map
rmap::map(location_freq_data,
overLayer= mapGCAMBasins,
numeric2Cat_list = numeric2Cat_list,
crop = FALSE
)