forked from chenhang98/BPR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhrnet48_256.py
120 lines (116 loc) · 3.54 KB
/
hrnet48_256.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
_data_root = os.environ.get('DATA_ROOT')
del os
_base_ = [
'../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoderRefine',
pretrained='open-mmlab://msra/hrnetv2_w48',
backbone=dict(
type='HRNetRefine',
norm_cfg=norm_cfg,
norm_eval=False,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(48, 96)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(48, 96, 192)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(48, 96, 192, 384)))),
decode_head=dict(
type='FCNHead',
in_channels=[48, 96, 192, 384],
in_index=(0, 1, 2, 3),
channels=sum([48, 96, 192, 384]),
input_transform='resize_concat',
kernel_size=1,
num_convs=1,
concat_input=False,
dropout_ratio=-1,
num_classes=2,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# dataset settings
dataset_type = 'RefineDataset'
data_root = _data_root
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (256, 256)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='LoadCoarseMask'),
dict(type='Resize', img_scale=crop_size, ratio_range=(1.0, 1.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg', 'coarse_mask']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='LoadCoarseMask'),
dict(
type='MultiScaleFlipAug',
img_scale=crop_size,
flip=False,
transforms=[
dict(type='Resize', img_scale=crop_size, keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img', 'coarse_mask']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/train',
mask_dir='mask_dir/train',
ann_dir='ann_dir/train',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/val',
mask_dir='mask_dir/val',
ann_dir='ann_dir/val',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
img_dir='img_dir/val',
mask_dir='mask_dir/val',
ann_dir='ann_dir/val',
pipeline=test_pipeline))