forked from hx173149/C3D-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
input_data.py
104 lines (97 loc) · 3.89 KB
/
input_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import PIL.Image as Image
import random
import numpy as np
import cv2
import time
def get_frames_data(filename, num_frames_per_clip=16):
''' Given a directory containing extracted frames, return a video clip of
(num_frames_per_clip) consecutive frames as a list of np arrays '''
ret_arr = []
s_index = 0
for parent, dirnames, filenames in os.walk(filename):
if(len(filenames)<num_frames_per_clip):
return [], s_index
filenames = sorted(filenames)
s_index = random.randint(0, len(filenames) - num_frames_per_clip)
for i in range(s_index, s_index + num_frames_per_clip):
image_name = str(filename) + '/' + str(filenames[i])
img = Image.open(image_name)
img_data = np.array(img)
ret_arr.append(img_data)
return ret_arr, s_index
def read_clip_and_label(filename, batch_size, start_pos=-1, num_frames_per_clip=16, crop_size=112, shuffle=False):
lines = open(filename,'r')
read_dirnames = []
data = []
label = []
batch_index = 0
next_batch_start = -1
lines = list(lines)
np_mean = np.load('crop_mean.npy').reshape([num_frames_per_clip, crop_size, crop_size, 3])
# Forcing shuffle, if start_pos is not specified
if start_pos < 0:
shuffle = True
if shuffle:
video_indices = range(len(lines))
random.seed(time.time())
random.shuffle(video_indices)
else:
# Process videos sequentially
video_indices = range(start_pos, len(lines))
for index in video_indices:
if(batch_index>=batch_size):
next_batch_start = index
break
line = lines[index].strip('\n').split()
dirname = line[0]
tmp_label = line[1]
if not shuffle:
print("Loading a video clip from {}...".format(dirname))
tmp_data, _ = get_frames_data(dirname, num_frames_per_clip)
img_datas = [];
if(len(tmp_data)!=0):
for j in xrange(len(tmp_data)):
img = Image.fromarray(tmp_data[j].astype(np.uint8))
if(img.width>img.height):
scale = float(crop_size)/float(img.height)
img = np.array(cv2.resize(np.array(img),(int(img.width * scale + 1), crop_size))).astype(np.float32)
else:
scale = float(crop_size)/float(img.width)
img = np.array(cv2.resize(np.array(img),(crop_size, int(img.height * scale + 1)))).astype(np.float32)
img = img[(img.shape[0] - crop_size)/2:(img.shape[0] - crop_size)/2 + crop_size, (img.shape[1] - crop_size)/2:(img.shape[1] - crop_size)/2 + crop_size,:] - np_mean[j]
img_datas.append(img)
data.append(img_datas)
label.append(int(tmp_label))
batch_index = batch_index + 1
read_dirnames.append(dirname)
# pad (duplicate) data/label if less than batch_size
valid_len = len(data)
pad_len = batch_size - valid_len
if pad_len:
for i in range(pad_len):
data.append(img_datas)
label.append(int(tmp_label))
np_arr_data = np.array(data).astype(np.float32)
np_arr_label = np.array(label).astype(np.int64)
return np_arr_data, np_arr_label, next_batch_start, read_dirnames, valid_len