forked from Stuart-D-King/housing_predictive
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_split_data.py
128 lines (97 loc) · 3.63 KB
/
get_split_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, StratifiedShuffleSplit
import tarfile
from six.moves import urllib
DOWNLOAD_ROOT = 'https://raw.githubusercontent.com/ageron/handson-ml/master/'
HOUSING_PATH = 'datasets/housing'
HOUSING_URL = DOWNLOAD_ROOT + HOUSING_PATH + '/housing.tgz'
def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
'''
Fetch data from online repository; save to file (create directory if non-existent)
INPUT
housing_url: full url link to dataset
housing_path: directory path above root
OUTPUT
none
'''
if not os.path.isdir(housing_path):
os.makedirs(housing_path)
tgz_path = os.path.join(housing_path, 'housing.tgz')
urllib.request.urlretrieve(housing_url, tgz_path)
housing_tgz = tarfile.open(tgz_path)
housing_tgz.extractall(path=housing_path)
housing_tgz.close()
def load_housing_data(housing_path=HOUSING_PATH):
'''
Load data from file and create categorized median income variable
INPUT
housing_path: directory of saved data
OUTPUT
dataframe with categorized median income variable added
'''
csv_path = os.path.join(housing_path, 'housing.csv')
df = pd.read_csv(csv_path)
return categorize_median_income(df)
def make_histograms(df):
'''
Create a plot of histograms for each numerical variable
INPUT
df: housing dataframe
OUTPUT
none; saved plot
'''
df.hist(bins=50, figsize=(10,8))
plt.savefig('plots/histograms', dpi=200)
plt.close()
def create_new_attributes(df):
'''
Create new attribute combinations and add to input dataframe
INPUT
df: housing dataframe
OUTPUT
housing dataframe with new attributes added
'''
df['rooms_per_household'] = df['total_rooms']/df['households']
df['bedrooms_per_room'] = df['total_bedrooms']/df['total_rooms']
df['population_per_household'] = df['population']/df['households']
return df
def categorize_median_income(df):
'''
Create a variable that categorizes the median income, capping the highest category value at 5.0
INPUT
df: housing dataframe
OUTPUT
housing dataframe with categorized median income variable added
'''
df['income_cat'] = np.ceil(df['median_income'] / 1.5)
df['income_cat'].where(df['income_cat'] < 5, 5.0, inplace=True)
return df
def stratified_split(df):
'''
Perform sklearn's StratifiedShuffleSplit to create training and test sets, with the median income category variable serving as the feature to stratify the split
INPUT
df: housing dataframe
OUTPUT
strat_train: stratified training set
strat_test: stratified test set
'''
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_idx, test_idx in split.split(df, df['income_cat']):
strat_train = df.loc[train_idx]
strat_test = df.loc[test_idx]
return strat_train, strat_test
if __name__ == '__main__':
fetch_housing_data()
df = load_housing_data()
# make_histograms(df) # first run saved to file
# df = create_new_attributes(df) # add new attribute combinations (also done later with custom class)
train, test = stratified_split(df) # stratified split using the newly created income_cat column
# drop income_cat column to revert back to original state
for s in (train, test):
s.drop(['income_cat'], axis=1, inplace=True)
# save training and test sets to file
train.to_csv(HOUSING_PATH + '/train.csv', index=False)
test.to_csv(HOUSING_PATH + '/test.csv', index=False)