-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcpuGroupby.cpp
481 lines (435 loc) · 14.6 KB
/
cpuGroupby.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
//
// cpuGroupby.cpp
// RAPIDS
//
// Created by Aaron on 11/27/18.
// Copyright © 2018 Aaron Nightingale. All rights reserved.
//
#include <iostream>
#include "cpuGroupby.h"
#include <vector>
#include <numeric>
#include <algorithm>
#include <random>
#include <limits>
std::random_device rd;
std::mt19937 gen(rd());
void cpuGroupby::fillRand(int distinctKeys, int distinctVals) {
const int maxKeyVal = 65535;
std::uniform_int_distribution<> keyVals(0, maxKeyVal);
std::uniform_int_distribution<> keys(0, distinctKeys - 1);
std::uniform_int_distribution<> vals(0, distinctVals - 1);
// Key array
std::vector<std::vector<int>> keyArray;
int currKey = 0;
while (currKey < distinctKeys) {
std::vector<int> random_key(num_key_columns);
for (auto& i: random_key) {
i = keyVals(gen);
}
auto result = std::find(std::begin(keyArray), std::end(keyArray), random_key);
if (result == std::end(keyArray)) {
keyArray.push_back(random_key);
currKey++;
}
}
for (int cRow=0; cRow<num_key_rows; cRow++) {
int useKey = keys(gen);
//Fill the key columns in a row
for (int keyIdx=0; keyIdx<num_key_columns; keyIdx++) {
key_columns[keyIdx*num_key_rows + cRow] = keyArray[useKey][keyIdx];
}
//Fill the value columns in a row
for (int valIdx=0; valIdx<num_value_columns; valIdx++) {
value_columns[valIdx*num_value_rows + cRow] = vals(gen);
}
}
}
void cpuGroupby::allocResultArray() {
output_keys = new int[numGroups*num_key_columns];
output_values = new int[numGroups*num_value_columns];
}
void cpuGroupby::libsort() {
std::vector<int> idx(num_key_rows);
std::iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(),
[=] (const int idx1, const int idx2) {
for (int i = 0; i < num_key_columns; ++i) {
int data1 = key_columns[i * num_key_rows + idx1];
int data2 = key_columns[i * num_key_rows + idx2];
if (data1 > data2) return false;
if (data1 < data2) return true;
}
return false;
});
std::vector<int> new_row(num_key_rows);
for (int i = 0; i < num_key_columns; ++i) {
for (int j = 0; j < num_key_rows; ++j) {
new_row[j] = key_columns[i * num_key_rows + idx[j]];
}
std::copy(new_row.begin(), new_row.end(), key_columns + i * num_key_rows);
}
for (int i = 0; i < num_value_columns; ++i) {
for (int j = 0; j < num_value_rows; ++j) {
new_row[j] = value_columns[i * num_value_rows + idx[j]];
}
std::copy(new_row.begin(), new_row.end(), value_columns + i * num_value_rows);
}
}
void cpuGroupby::getNumGroups() {
// Start with one group, each boundry is a "split" adding another group.
numGroups = 1;
// Store the start row of each group here
tempCol[0] = 0;
for (int cRow=1; cRow<num_key_rows; cRow++) {
//Loop through all key columns
for (int keyIdx=0; keyIdx<num_key_columns; keyIdx++) {
if (key_columns[keyIdx*num_key_rows+cRow] != key_columns[keyIdx*num_key_rows+cRow-1]) {
// New Group found
tempCol[numGroups] = cRow;
numGroups++;
keyIdx = num_key_columns+1; //break the for loop
}
}
}
std::cout << "numGroups: " << numGroups << std::endl;
}
void cpuGroupby::getGroupPtr() {
// Allocate the group pointer array
groupPtr = (int*) malloc(sizeof(int)*numGroups);
// Fill it
for (int i=0; i<numGroups; i++) {
groupPtr[i] = tempCol[i];
}
}
std::string opName(reductionType A) {
if (A == rmin) return "rmin";
else if (A == rmax) return "rmax";
else if (A == rmean) return "rmean";
else if (A == rcount) return "rcount";
else if (A == rsum) return "rsum";
else return "None";
}
// Groupby functions
void cpuGroupby::groupby() {
//max, min, sum, count, and arithmetic mean
//Init reduction operation list (rmax for testing)
std::vector<reductionType> allOps{rmin, rmax, rmean, rcount, rsum};
std::uniform_int_distribution<> dis(0, 4);
std::cout << "Operations:";
for (int i=0; i<num_value_columns; i++) {
ops[i] = allOps[dis(gen)];
std::cout << opName(ops[i]) << " ";
}
std::cout << std::endl;
//sort();
//quickSort(key_columns, 0, num_key_rows);
libsort();
getNumGroups();
// printData();
allocResultArray();
getGroupPtr();
writeOutputKeys();
doReductionOps();
#ifndef NOPRINT
printResults();
#endif
}
void cpuGroupby::doReductionOps() {
for (int valIdx=0; valIdx<num_value_columns; valIdx++) {
switch (ops[valIdx]) {
case rmax:
rMax(valIdx);
break;
case rmin:
rMin(valIdx);
break;
case rmean:
rMean(valIdx);
break;
case rcount:
rCount(valIdx);
break;
case rsum:
rSum(valIdx);
break;
default:
rMax(valIdx);
break;
}
}
}
void cpuGroupby::rMax(int valIdx) {
int maximum = std::numeric_limits<int>::lowest();
int tempVal;
for (int groupIdx=1; groupIdx<numGroups; groupIdx++) {
maximum = std::numeric_limits<int>::lowest();
for (int subIdx=0; subIdx<groupPtr[groupIdx]-groupPtr[groupIdx-1]; subIdx++) {
tempVal = value_columns[ valIdx*num_value_rows + groupPtr[groupIdx-1]+subIdx ];
if (tempVal>maximum) {
maximum = tempVal;
}
}
// Copy values to the output array
output_values[valIdx*numGroups + groupIdx-1] = maximum;
}
//Handeling the final group
maximum = std::numeric_limits<int>::lowest();
for (int subIdx=groupPtr[numGroups-1]; subIdx<num_value_rows; subIdx++) {
tempVal = value_columns[ valIdx*num_value_rows + subIdx ];
if (tempVal>maximum) {
maximum = tempVal;
}
}
// Copy values to the output array
output_values[valIdx*numGroups + numGroups-1] = maximum;
}
void cpuGroupby::rMin(int valIdx) {
int minimum = std::numeric_limits<int>::max();
int tempVal;
for (int groupIdx=1; groupIdx<numGroups; groupIdx++) {
minimum = std::numeric_limits<int>::max();
for (int subIdx=0; subIdx<groupPtr[groupIdx]-groupPtr[groupIdx-1]; subIdx++) {
tempVal = value_columns[ valIdx*num_value_rows + groupPtr[groupIdx-1]+subIdx ];
if (tempVal<minimum) {
minimum = tempVal;
}
}
// Copy values to the output array
output_values[valIdx*numGroups + groupIdx-1] = minimum;
}
//Handeling the final group
minimum = std::numeric_limits<int>::max();
for (int subIdx=groupPtr[numGroups-1]; subIdx<num_value_rows; subIdx++) {
tempVal = value_columns[ valIdx*num_value_rows + subIdx ];
if (tempVal<minimum) {
minimum = tempVal;
}
}
// Copy values to the output array
output_values[valIdx*numGroups + numGroups-1] = minimum;
}
void cpuGroupby::rMean(int valIdx) {
int sum=0;
int mean=0;
for (int groupIdx=1; groupIdx<numGroups; groupIdx++) {
sum = 0;
for (int subIdx=0; subIdx<groupPtr[groupIdx]-groupPtr[groupIdx-1]; subIdx++) {
sum += value_columns[valIdx*num_value_rows + groupPtr[groupIdx-1]+subIdx ];
}
// Copy values to the output array
mean = sum / (groupPtr[groupIdx]-groupPtr[groupIdx-1]);
output_values[valIdx*numGroups + groupIdx-1] = mean;
}
//Handeling the final group
sum = 0;
for (int subIdx=groupPtr[numGroups-1]; subIdx<num_value_rows; subIdx++) {
sum += value_columns[ valIdx*num_value_rows + subIdx ];
}
// Copy values to the output array
mean = sum / (num_value_rows-groupPtr[numGroups-1]);
output_values[valIdx*numGroups + numGroups-1] = mean;
}
void cpuGroupby::rSum(int valIdx) {
int sum=0;
for (int groupIdx=1; groupIdx<numGroups; groupIdx++) {
sum = 0;
for (int subIdx=0; subIdx<groupPtr[groupIdx]-groupPtr[groupIdx-1]; subIdx++) {
sum += value_columns[valIdx*num_value_rows + groupPtr[groupIdx-1]+subIdx ];
}
// Copy values to the output array
output_values[valIdx*numGroups + groupIdx-1] = sum;
}
//Handeling the final group
sum = 0;
for (int subIdx=groupPtr[numGroups-1]; subIdx<num_value_rows; subIdx++) {
sum += value_columns[ valIdx*num_value_rows + subIdx ];
}
// Copy values to the output array
output_values[valIdx*numGroups + numGroups-1] = sum;
}
void cpuGroupby::rCount(int valIdx) {
int count = 0;
for (int groupIdx=1; groupIdx<numGroups; groupIdx++) {
count = groupPtr[groupIdx]-groupPtr[groupIdx-1];
// Copy values to the output array
output_values[valIdx*numGroups + groupIdx-1] = count;
}
// Handling the final group
count = num_value_rows-groupPtr[numGroups-1];
output_values[valIdx*numGroups + numGroups-1] = count;
}
void cpuGroupby::writeOutputKeys() {
// Copy each unique key to the output.
int rowIdx;
for (int groupIdx=0; groupIdx<numGroups; groupIdx++) {
rowIdx = groupPtr[groupIdx];
for (int keyIdx=0; keyIdx<num_key_columns; keyIdx++) {
output_keys[keyIdx*numGroups + groupIdx] = key_columns[keyIdx*num_key_rows + rowIdx];
}
}
}
// Debug / Printing Functions
void cpuGroupby::printData() {
std::cout << "Printing Data..." << std::endl;
for (int cRow=0; cRow<num_key_rows; cRow++) {
//print keys for a row
for (int keyIdx=0; keyIdx<num_key_columns; keyIdx++) {
if (keyIdx == 0) {
std::cout << "{";
}
std::cout << key_columns[num_key_rows*keyIdx + cRow];
if(keyIdx != num_key_columns-1) {
std::cout << ":";
} else {
std::cout << "}:";
}
}
// Print values for a row
for (int valIdx=0; valIdx<num_value_columns; valIdx++) {
if (valIdx == 0) {
std::cout << "{";
}
std::cout << value_columns[num_value_rows*valIdx + cRow];
if(valIdx != num_value_columns-1) {
std::cout << ":";
} else {
std::cout << "}";
}
}
std::cout << std::endl;
}
std::cout << "End Printing Data" << std::endl << std::endl;
}
void cpuGroupby::printResults() {
std::cout << "Printing Results..." << std::endl;
for (int cRow=0; cRow<numGroups; cRow++) {
//print keys for a row
for (int keyIdx=0; keyIdx<num_key_columns; keyIdx++) {
if (keyIdx == 0) {
std::cout << "{";
}
std::cout << output_keys[numGroups*keyIdx + cRow];
if(keyIdx != num_key_columns-1) {
std::cout << ":";
} else {
std::cout << "}:";
}
}
// Print values for a row
for (int valIdx=0; valIdx<num_value_columns; valIdx++) {
if (valIdx == 0) {
std::cout << "{";
}
std::cout << output_values[numGroups*valIdx + cRow];
if(valIdx != num_value_columns-1) {
std::cout << ":";
} else {
std::cout << "}";
}
}
std::cout << std::endl;
}
std::cout << "End Printing Results" << std::endl;
}
void cpuGroupby::printGPUResults(int* GPU_output_keys, int* GPU_output_values){
std::cout << "Printing GPU Results..." << std::endl;
for (int cRow=0; cRow<numGroups; cRow++) {
//print keys for a row
for (int keyIdx=0; keyIdx<num_key_columns; keyIdx++) {
if (keyIdx == 0) {
std::cout << "{";
}
std::cout << GPU_output_keys[numGroups*keyIdx + cRow];
if(keyIdx != num_key_columns-1) {
std::cout << ":";
} else {
std::cout << "}:";
}
}
// Print values for a row
for (int valIdx=0; valIdx<num_value_columns; valIdx++) {
if (valIdx == 0) {
std::cout << "{";
}
std::cout << GPU_output_values[numGroups*valIdx + cRow];
if(valIdx != num_value_columns-1) {
std::cout << ":";
} else {
std::cout << "}";
}
}
std::cout << std::endl;
}
std::cout << "End GPU Printing Results" << std::endl;
}
bool cpuGroupby::validGPUResult(int* GPUKeys, int* GPUValues, int GPUOutputRows, bool isSorted) {
if (GPUOutputRows != numGroups) {
std::cout << "FAILED - CPU Rows: " << numGroups << " GPU Rows: " << GPUOutputRows << std::endl;
return false;
}
// cout << "GPU:CPU"<<endl;
if (isSorted) {
for (int i=0; i<num_value_columns*numGroups; i++) {
// cout << GPUValues[i] << ":" << output_values[i] << endl;
if (GPUValues[i] != output_values[i]) {
std::cout << "FAILED - CPU data != GPU data " << std::endl;
return false;
}
}
} else {
std::vector<size_t> idx(GPUOutputRows);
std::iota(idx.begin(), idx.end(), 0);
std::sort(idx.begin(), idx.end(),
[=] (const size_t idx1, const size_t idx2) {
for (size_t i = 0; i < num_key_columns; ++i) {
size_t data1 = GPUKeys[i * GPUOutputRows + idx1];
size_t data2 = GPUKeys[i * GPUOutputRows + idx2];
if (data1 > data2) return false;
if (data1 < data2) return true;
}
return false;
});
for (size_t i = 0; i < GPUOutputRows; ++i) {
for (size_t j = 0; j < num_key_columns; ++j) {
if (GPUKeys[j * GPUOutputRows + idx[i]] != output_keys[j * GPUOutputRows + i]) {
std::cout << "FAILED - CPU key != GPU key at entry " << i << std::endl;
return false;
}
}
}
for (size_t i = 0; i < GPUOutputRows; ++i) {
for (size_t j = 0; j < num_value_columns; ++j) {
if (GPUValues[j * GPUOutputRows + idx[i]] != output_values[j * GPUOutputRows + i]) {
std::cout << "FAILED - CPU data != GPU data at entry " << i << std::endl;
return false;
}
}
}
}
std::cout << "PASSED - CPU data == GPU data " << std::endl;
return true;
}
// Contructor & Destructor Funcitons
cpuGroupby::~cpuGroupby() {
//Free the allocated memory
delete [] key_columns;
delete [] value_columns;
delete [] tempCol;
delete [] ops;
delete [] output_keys;
delete [] output_values;
}
cpuGroupby::cpuGroupby(int numKeys, int numValues, int numRows) {
// Save the arguments
num_key_columns = numKeys;
num_key_rows = numRows;
num_value_columns = numValues;
num_value_rows = numRows;
num_ops = numValues;
// Allocate key & value arrays
key_columns = new int[num_key_columns*num_key_rows];
value_columns = new int[num_value_columns*num_value_rows];
tempCol = new int[num_value_rows];
ops = new reductionType[num_ops];
}