-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathfeed_forward.py
274 lines (229 loc) · 11.3 KB
/
feed_forward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
'''A quick example to generate heatmaps for vgg16.'''
import os
from functools import partial
import click
import torch
import numpy as np
from torch.utils.data import DataLoader, Subset
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor
from torchvision.datasets import ImageFolder
from torchvision.models import vgg11, vgg11_bn, vgg16, vgg16_bn, resnet18, resnet50
from zennit.attribution import Gradient, SmoothGrad, IntegratedGradients, Occlusion
from zennit.composites import COMPOSITES
from zennit.core import Hook
from zennit.image import imsave, CMAPS
from zennit.layer import Sum
from zennit.torchvision import VGGCanonizer, ResNetCanonizer
MODELS = {
'vgg16': (vgg16, VGGCanonizer),
'vgg16_bn': (vgg16_bn, VGGCanonizer),
'vgg11': (vgg11, VGGCanonizer),
'vgg11_bn': (vgg11_bn, VGGCanonizer),
'resnet18': (resnet18, ResNetCanonizer),
'resnet50': (resnet50, ResNetCanonizer),
}
ATTRIBUTORS = {
'gradient': Gradient,
'smoothgrad': SmoothGrad,
'integrads': IntegratedGradients,
'occlusion': Occlusion,
'inputxgrad': IntegratedGradients,
}
class SumSingle(Hook):
def __init__(self, dim=1):
super().__init__()
self.dim = dim
def backward(self, module, grad_input, grad_output):
elems = [torch.zeros_like(grad_output[0])] * (grad_input[0].shape[-1])
elems[self.dim] = grad_output[0]
return (torch.stack(elems, dim=-1),)
class BatchNormalize:
def __init__(self, mean, std, device=None):
self.mean = torch.tensor(mean, device=device)[None, :, None, None]
self.std = torch.tensor(std, device=device)[None, :, None, None]
def __call__(self, tensor):
return (tensor - self.mean) / self.std
class AllowEmptyClassImageFolder(ImageFolder):
'''Subclass of ImageFolder, which only finds non-empty classes, but with their correct indices given other empty
classes. This counter-acts the changes in torchvision 0.10.0, in which DatasetFolder does not allow empty classes
anymore by default. Versions before 0.10.0 do not expose `find_classes`, and thus this change does not change the
functionality of `ImageFolder` in earlier versions.
'''
def find_classes(self, directory):
with os.scandir(directory) as scanit:
class_info = sorted((entry.name, len(list(os.scandir(entry.path)))) for entry in scanit if entry.is_dir())
class_to_idx = {class_name: index for index, (class_name, n_members) in enumerate(class_info) if n_members}
if not class_to_idx:
raise FileNotFoundError(f'No non-empty classes found in \'{directory}\'.')
return list(class_to_idx), class_to_idx
@click.command()
@click.argument('dataset-root', type=click.Path(file_okay=False))
@click.argument('relevance_format', type=click.Path(dir_okay=False, writable=True))
@click.option('--attributor', 'attributor_name', type=click.Choice(list(ATTRIBUTORS)), default='gradient')
@click.option('--composite', 'composite_name', type=click.Choice(list(COMPOSITES)))
@click.option('--model', 'model_name', type=click.Choice(list(MODELS)), default='vgg16_bn')
@click.option('--parameters', type=click.Path(dir_okay=False))
@click.option(
'--inputs',
'input_format',
type=click.Path(dir_okay=False, writable=True),
help='Input image format string. {sample} is replaced with the sample index.'
)
@click.option('--batch-size', type=int, default=16)
@click.option('--max-samples', type=int)
@click.option('--n-outputs', type=int, default=1000)
@click.option('--cpu/--gpu', default=True)
@click.option('--shuffle/--no-shuffle', default=False)
@click.option('--with-bias/--no-bias', default=True)
@click.option('--with-residual/--no-residual', default=True)
@click.option('--relevance-norm', type=click.Choice(['symmetric', 'absolute', 'unaligned']), default='symmetric')
@click.option('--cmap', type=click.Choice(list(CMAPS)), default='coldnhot')
@click.option('--level', type=float, default=1.0)
@click.option('--seed', type=int, default=0xDEADBEEF)
def main(
dataset_root,
relevance_format,
attributor_name,
composite_name,
model_name,
parameters,
input_format,
batch_size,
max_samples,
n_outputs,
cpu,
shuffle,
with_bias,
with_residual,
cmap,
level,
relevance_norm,
seed
):
'''Generate heatmaps of an image folder at DATASET_ROOT to files RELEVANCE_FORMAT.
RELEVANCE_FORMAT is a format string, for which {sample} is replaced with the sample index.
'''
# set a manual seed for the RNG
torch.manual_seed(seed)
# use the gpu if requested and available, else use the cpu
device = torch.device('cuda:0' if torch.cuda.is_available() and not cpu else 'cpu')
# mean and std of ILSVRC2012 as computed for the torchvision models
norm_fn = BatchNormalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), device=device)
# transforms as used for torchvision model evaluation
transform = Compose([
Resize(256),
CenterCrop(224),
ToTensor(),
])
# the dataset is a folder containing folders with samples, where each folder corresponds to one label
dataset = AllowEmptyClassImageFolder(dataset_root, transform=transform)
# limit the number of output samples, if requested, by creating a subset
if max_samples is not None:
if shuffle:
indices = sorted(np.random.choice(len(dataset), min(len(dataset), max_samples), replace=False))
else:
indices = range(min(len(dataset), max_samples))
dataset = Subset(dataset, indices)
loader = DataLoader(dataset, shuffle=shuffle, batch_size=batch_size)
model = MODELS[model_name][0]()
# load model parameters if requested; the parameter file may need to be downloaded separately
if parameters is not None:
state_dict = torch.load(parameters)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
# disable requires_grad for all parameters, we do not need their modified gradients
for param in model.parameters():
param.requires_grad = False
# convenience identity matrix to produce one-hot encodings
eye = torch.eye(n_outputs, device=device)
# function to compute output relevance given the function output and a target
def attr_output_fn(output, target):
# output times one-hot encoding of the target labels of size (len(target), 1000)
return output * eye[target]
# create a composite if composite_name was set, otherwise we do not use a composite
composite = None
if composite_name is not None:
composite_kwargs = {}
if composite_name == 'epsilon_gamma_box':
# the maximal input shape, needed for the ZBox rule
shape = (batch_size, 3, 224, 224)
# the highest and lowest pixel values for the ZBox rule
composite_kwargs['low'] = norm_fn(torch.zeros(*shape, device=device))
composite_kwargs['high'] = norm_fn(torch.ones(*shape, device=device))
if not with_residual and 'resnet' in model_name:
# skip the residual connection through the Sum added by the ResNetCanonizer
composite_kwargs['layer_map'] = [(Sum, SumSingle(1))]
# provide the name 'bias' in zero_params if no bias should be used to compute the relevance
if not with_bias and composite_name in [
'epsilon_gamma_box',
'epsilon_plus',
'epsilon_alpha2_beta1',
'epsilon_plus_flat',
'epsilon_alpha2_beta1_flat',
'excitation_backprop',
]:
composite_kwargs['zero_params'] = ['bias']
# use torchvision specific canonizers, as supplied in the MODELS dict
composite_kwargs['canonizers'] = [MODELS[model_name][1]()]
# create a composite specified by a name; the COMPOSITES dict includes all preset composites provided by zennit.
composite = COMPOSITES[composite_name](**composite_kwargs)
# specify some attributor-specific arguments
attributor_kwargs = {
'smoothgrad': {'noise_level': 0.1, 'n_iter': 20},
'integrads': {'n_iter': 20},
'inputxgrad': {'n_iter': 1},
'occlusion': {'window': (56, 56), 'stride': (28, 28)},
}.get(attributor_name, {})
# create an attributor, given the ATTRIBUTORS dict given above. If composite is None, the gradient will not be
# modified for the attribution
attributor = ATTRIBUTORS[attributor_name](model, composite, **attributor_kwargs)
# the current sample index for creating file names
sample_index = 0
# the accuracy
accuracy = 0.
# enter the attributor context outside the data loader loop, such that its canonizers and hooks do not need to be
# registered and removed for each step. This registers the composite (and applies the canonizer) to the model
# within the with-statement
with attributor:
for data, target in loader:
# we use data without the normalization applied for visualization, and with the normalization applied as
# the model input
data_norm = norm_fn(data.to(device))
# create output relevance function of output with fixed target
output_relevance = partial(attr_output_fn, target=target)
# this will compute the modified gradient of model, where the output relevance is chosen by the as the
# model's output for the ground-truth label index
output, relevance = attributor(data_norm, output_relevance)
# sum over the color channel for visualization
relevance = np.array(relevance.sum(1).detach().cpu())
# normalize between 0. and 1. given the specified strategy
if relevance_norm == 'symmetric':
# 0-aligned symmetric relevance, negative and positive can be compared, the original 0. becomes 0.5
amax = np.abs(relevance).max((1, 2), keepdims=True)
relevance = (relevance + amax) / 2 / amax
elif relevance_norm == 'absolute':
# 0-aligned absolute relevance, only the amplitude of relevance matters, the original 0. becomes 0.
relevance = np.abs(relevance)
relevance /= relevance.max((1, 2), keepdims=True)
elif relevance_norm == 'unaligned':
# do not align, the original minimum value becomes 0., the original maximum becomes 1.
rmin = relevance.min((1, 2), keepdims=True)
rmax = relevance.max((1, 2), keepdims=True)
relevance = (relevance - rmin) / (rmax - rmin)
for n in range(len(data)):
fname = relevance_format.format(sample=sample_index + n)
# zennit.image.imsave will create an appropriate heatmap given a cmap specification
imsave(fname, relevance[n], vmin=0., vmax=1., level=level, cmap=cmap)
if input_format is not None:
fname = input_format.format(sample=sample_index + n)
# if there are 3 color channels, imsave will not create a heatmap, but instead save the image with
# its appropriate colors
imsave(fname, data[n])
sample_index += len(data)
# update the accuracy
accuracy += (output.argmax(1) == target).sum().detach().cpu().item()
accuracy /= len(dataset)
print(f'Accuracy: {accuracy:.2f}')
if __name__ == '__main__':
main()