-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
32 lines (27 loc) · 1.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from sklearn.metrics import confusion_matrix, accuracy_score, f1_score
def model_validation(model, X_data_train, X_data_test, Y_data_train, Y_data_test, train=True):
model.fit(X_data_train)
if train:
print('Train: ')
predicted_train = model.predict(X_data_train)
print(confusion_matrix(Y_data_train, predicted_train))
print('accuracy: ', accuracy_score(Y_data_train, predicted_train))
print('f1 score: ', f1_score(Y_data_train, predicted_train))
print('Test: ')
predicted_test = model.predict(X_data_test)
print(confusion_matrix(Y_data_test, predicted_test))
print('accuracy: ',accuracy_score(Y_data_test, predicted_test))
print('f1 score: ', f1_score(Y_data_test, predicted_test))
def model_validation_supervised(model, X_data_train, X_data_test, Y_data_train, Y_data_test, train=True):
model.fit(X_data_train, Y_data_train)
if train:
print('Train: ')
predicted_train = model.predict(X_data_train)
print(confusion_matrix(Y_data_train, predicted_train))
print('accuracy: ', accuracy_score(Y_data_train, predicted_train))
print('f1 score: ', f1_score(Y_data_train, predicted_train))
print('Test: ')
predicted_test = model.predict(X_data_test)
print(confusion_matrix(Y_data_test, predicted_test))
print('accuracy: ',accuracy_score(Y_data_test, predicted_test))
print('f1 score: ', f1_score(Y_data_test, predicted_test))