forked from mikel-brostrom/boxmot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
49 lines (40 loc) · 1.7 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# build the image and tag it for easier later reference
# docker build -t mikel-brostrom/yolov5_strongsort_osnet .
# Base image: Nvidia PyTorch https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:24.05-py3
# Update image
RUN apt update
# Create working directory
WORKDIR /usr/src/boxmot
# Clone with submodules
RUN git clone https://github.com/mikel-brostrom/yolo_tracking.git -b master /usr/src/boxmot
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e .
# Install custom ultralytics package which makes model from other repos loadable
RUN pip install git+https://github.com/mikel-brostrom/ultralytics.git
# ------------------------------------------------------------------------------
# A docker container exits when its main process finishes, which in this case is bash.
# This means that the containers will stop once you exit them and everything will be lost.
# To avoid this use detach mode. More on this in the next paragraph
#
# - run interactively with all GPUs accessible:
#
# docker run -it --gpus all mikel-brostrom/yolov5_strongsort_osnet bash
#
# - run interactively with first and third GPU accessible:
#
# docker run -it --gpus '"device=0, 2"' mikel-brostrom/yolov5_strongsort_osnet bash
# Run in detached mode (if you exit the container it won't stop)
#
# -create a detached docker container from an image:
#
# docker run -it --gpus all -d mikel-brostrom/yolov5_strongsort_osnet
#
# - this will return a <container_id> number which makes it accessible. Access it by:
#
# docker exec -it <container_id>
#
# - When you are done with the container stop it by:
#
# docker stop <container_id>