This document is used to list steps of reproducing TensorFlow Intel® Neural Compressor tuning zoo result of Transformer_LT_mlperf. Part of the inference code is based on the transformer mlperf evaluation code. Detailed information on mlperf benchmark can be found in mlcommons/training. This example can run on Intel CPUs and GPUs.
# Install Intel® Neural Compressor
pip install neural-compressor
pip install tensorflow
Note: Validated TensorFlow Version.
Intel Extension for Tensorflow is mandatory to be installed for quantizing the model on Intel GPUs.
pip install --upgrade intel-extension-for-tensorflow[xpu]
Please refer to the Installation Guides for latest Intel GPU driver installation. For any more details, please follow the procedure in install-gpu-drivers.
Intel Extension for Tensorflow for Intel CPUs is experimental currently. It's not mandatory for quantizing the model on Intel CPUs.
pip install --upgrade intel-extension-for-tensorflow[cpu]
Note: The version compatibility of stock Tensorflow and ITEX can be checked here. Please make sure you have installed compatible Tensorflow and ITEX.
Follow the instructions on Model Zoo for Intel® Architecture to download and preprocess the WMT English-German dataset and generate a FP32 frozen model. Please make sure there are the following files in the dataset directory and the input model directory.
-
DATASET_DIR: newstest2014.de, newstest2014.en, vocab.ende.32768
-
INPUT_MODEL_DIR: the FP32 frozen model .pb file
bash run_quant.sh \
--input_model=$INPUT_MODEL \
--dataset_location=$DATASET_DIR \
--output_model=$OUTPUT_MODEL \
--file_out=$OUTPUT_TRANSLATION_FILE \
--batch_size=$BATCH_SIZE \
--warmup_steps=$WARMUPS \
--bleu_variant=$VARIANT \
--num_inter=$INTER_THREADS \
--num_intra=$INTRA_THREADS
# performance mode: get performance
bash run_benchmark.sh \
--input_model=$INPUT_MODEL \
--dataset_location=$DATASET_DIR \
--file_out=$OUTPUT_TRANSLATION_FILE \
--mode=performance \
--batch_size=$BATCH_SIZE \
--iters=$ITERATIONS \
--warmup_steps=$WARMUPS \
--bleu_variant=$VARIANT \
--num_inter=$INTER_THREADS \
--num_intra=$INTRA_THREADS
# accuracy mode: get accuracy
bash run_benchmark.sh \
--input_model=$INPUT_MODEL \
--dataset_location=$DATASET_DIR \
--file_out=$OUTPUT_TRANSLATION_FILE \
--mode=accuracy \
--batch_size=$BATCH_SIZE \
--warmup_steps=$WARMUPS \
--bleu_variant=$VARIANT \
--num_inter=$INTER_THREADS \
--num_intra=$INTRA_THREADS
Where (Default values are shown in the square brackets):
- $INPUT_MODEL ["./transformer_mlperf_fp32.pb"]-- The path to input FP32 frozen model .pb file to load
- $DATASET_DIR ["./transformer_uniform_data"]-- The path to input dataset directory, which should include newstest2014.en, newstest2014.de and vocab.ende.32768
- $OUTPUT_MODEL ["./output_transformer_mlperf_int8.pb"]-- The user-specified export path to the output INT8 quantized model
- $OUTPUT_TRANSLATION_FILE ["./output_translation_result.txt"] -- The file path to save model translation result, only the most recent translation result will be saved
- $BATCH_SIZE [64]-- The batch size for model inference
- $ITERATIONS [-1]-- The user-defined total inference iterations in benchmark mode. If it is -1, it means to run the entire dataset
- $WARMUPS [10]-- The number of warmup steps before benchmarking the model
- $VARIANT ["uncased"]-- The case sensitive type to compute BLEU score, which is one of two options: 'uncased'/'cased'
- $INTER_THREADS [2]-- The number of inter op parallelism thread to use, which can be set to the number of sockets
- $INTRA_THREADS [28]-- The number of intra op parallelism thread to use, which can be set to the number of physical core per socket
This is a tutorial of how to enable Transformer_LT_mlperf model with Intel® Neural Compressor.
-
User specifies fp32 model, calibration dataset q_dataloader, evaluation dataset eval_dataloader and metric.
-
User specifies fp32 model, calibration dataset q_dataloader and a custom eval_func which encapsulates the evaluation dataset and metric by itself.
For Transformer_LT_mlperf, we applied the latter one because we don't have dataset and metric for Transformer_LT_mlperf. The task is to implement the q_dataloader and eval_func.
Below dataset class uses getitem to provide the model with input.
class Dataset(object):
def __init__(self, *args):
# initialize dataset related info here
...
def __getitem__(self, index):
return self.lines[index], 0
def __len__(self):
return len(self.lines)
We evaluate the model with BLEU score, its source: https://github.com/IntelAI/models/blob/master/models/language_translation/tensorflow/transformer_mlperf/inference/fp32/transformer/compute_bleu.py
The Quantization Config class has default parameters setting for running on Intel CPUs. If running this example on Intel GPUs, the 'backend' parameter should be set to 'itex' and the 'device' parameter should be set to 'gpu'.
config = PostTrainingQuantConfig(
device="gpu",
backend="itex",
inputs=['input_tokens'],
outputs=['model/Transformer/strided_slice_15'],
...
)
Here we set the input tensor and output tensors name into inputs and outputs args. In this case we calibrate and quantize the model, and use our calibration dataloader initialized from a 'Dataset' object.
After prepare step is done, we add tune code to generate quantized model.
graph = load_graph(FLAGS.input_graph)
from neural_compressor import quantization
from neural_compressor.config import PostTrainingQuantConfig
from neural_compressor.data import DataLoader
dataset = Dataset(FLAGS.input_file, FLAGS.vocab_file)
calib_dataloader = DataLoader(dataset = dataset,
framework ='tensorflow',
collate_fn = collate_fn,
batch_size = FLAGS.batch_size)
conf = PostTrainingQuantConfig(inputs=['input_tokens'],
outputs=['model/Transformer/strided_slice_15'],
calibration_sampling_size=[500])
q_model = quantization.fit(graph, conf=conf, calib_dataloader=calib_dataloader,
eval_func=eval_func)
try:
q_model.save(FLAGS.output_model)
except Exception as e:
tf.compat.v1.logging.error("Failed to save model due to {}".format(str(e)))
from neural_compressor.benchmark import fit
from neural_compressor.config import BenchmarkConfig
if FLAGS.mode == 'performance':
fit(graph, conf=BenchmarkConfig(), b_func=eval_func)
elif FLAGS.mode == 'accuracy':
eval_func(graph)
The Intel® Neural Compressor quantization.fit() function will return a best quantized model under time constraint.