pip install -r requirements.txt
Note: Validated PyTorch Version.
python -m pip install intel_extension_for_pytorch -f https://software.intel.com/ipex-whl-stable
Note: Intel® Extension for PyTorch* has PyTorch version requirement. Please check more detailed information via the URL below.
More installation methods can be found at Installation Guide
cd <path to your clone of the model zoo>/examples/pytorch/object_detection/ssd_resnet34/quantization/ptq/ipex
bash download_model.sh
Download the 2017 COCO dataset using the download_dataset.sh
script.
cd <path to your clone of the model zoo>/examples/pytorch/object_detection/ssd_resnet34/quantization/ptq/ipex
bash download_dataset.sh
- Set Jemalloc Preload for better performance. The jemalloc should be built from the General setup section.
export LD_PRELOAD="path/lib/libjemalloc.so":$LD_PRELOAD
export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:9000000000,muzzy_decay_ms:9000000000"
- Set IOMP preload for better performance. IOMP should be installed in your conda env from the General setup section.
export LD_PRELOAD=path/lib/libiomp5.so:$LD_PRELOAD
- Set ENV to use AMX if you are using SPR
export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
python infer.py
--data DATASET_DIR
--device 0
--checkpoint PRETAINED_MODEL #./pretrained/resnet34-ssd1200.pth
-w 10
-j 0
--no-cuda
--batch-size 16
--tune
--accuracy-mode
or
bash run_quant.sh --dataset_location=dataset --input_model=model
bash run_benchmark.sh --dataset_location=dataset --input_model=model --mode=accuracy/performance --int8=True/False