-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_answers.py
76 lines (61 loc) · 2.37 KB
/
my_answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import LSTM
import keras
# TODO: fill out the function below that transforms the input series
# and window-size into a set of input/output pairs for use with our RNN model
def window_transform_series(series, window_size):
# containers for input/output pairs
X = []
y = []
series_size = len(series)
print(series_size)
for start_i in range(0, (series_size-window_size), 1):
end_i = start_i + window_size
Input = series[start_i:end_i]
Output = series[end_i]
X.append(Input)
y.append(Output)
# reshape each
X = np.asarray(X)
X.shape = (np.shape(X)[0:2])
y = np.asarray(y)
y.shape = (len(y),1)
return X,y
# TODO: build an RNN to perform regression on our time series input/output data
def build_part1_RNN(window_size):
model = Sequential()
model.add(LSTM(units=5, input_shape = (window_size,1)))
model.add(Dense(1))
return model
### TODO: return the text input with only ascii lowercase and the punctuation given below included.
def cleaned_text(text):
punctuation = ['!', ',', '.', ':', ';', '?']
letters = [chr(i) for i in range(ord('a'),ord('z')+1)]
valid = punctuation + letters
for i in text:
if i not in valid:
text = text.replace(i,' ')
return text
### TODO: fill out the function below that transforms the input text and window-size into a set of input/output pairs for use with our RNN model
def window_transform_text(text, window_size, step_size):
# containers for input/output pairs
inputs = []
outputs = []
text_size = len(text)
for start_i in range(0, (text_size-window_size), step_size):
end_i = start_i + window_size
Input = text[start_i:end_i]
Output = text[end_i]
inputs.append(Input)
outputs.append(Output)
return inputs,outputs
# TODO build the required RNN model:
# a single LSTM hidden layer with softmax activation, categorical_crossentropy loss
def build_part2_RNN(window_size, num_chars):
model = Sequential()
model.add(LSTM(units=200, input_shape = (window_size,num_chars)))
model.add(Dense(num_chars))
model.add(Activation('softmax'))
return model