-
Notifications
You must be signed in to change notification settings - Fork 0
/
Main.f90
935 lines (934 loc) · 39.8 KB
/
Main.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
INCLUDE 'Module_Constants_sub.f90'
INCLUDE 'NumericalProbe_sub.f90'
INCLUDE 'AbsorbingCoefficient_sub.f90'
INCLUDE 'ExchangeInterfaceDataNew_sub.f90'
INCLUDE 'GetConservativeVariables_sub.f90'
INCLUDE 'GetMeanFlow_sub.f90'
INCLUDE 'GetMeshSize_sub.f90'
INCLUDE 'GetOriginalVariables_sub.f90'
INCLUDE 'InitializeAcousticField_sub.f90'
INCLUDE 'LDDRK_sub.f90'
INCLUDE 'Mesh_sub.f90'
INCLUDE 'MeshSmoothing_sub.f90'
INCLUDE 'Models_sub.f90'
INCLUDE 'TransformCoordinate_sub.f90'
INCLUDE 'OutputToTextFile_sub.f90'
INCLUDE 'Filter_sub.f90'
INCLUDE 'ReviseConserVariable_sub.f90'
INCLUDE 'PrintParameterSet_sub.f90'
INCLUDE 'InitialModule_sub.f90'
!
INCLUDE 'ObtainKineticEnergy_sub.f90'
PROGRAM AcousticScatteringParallelComputing
!---------------------------------------------------
!-----------------program introduction -----------------
!
!
!
!----------------------------------------------------
!......
!......
!-----var------------------------------------------------------
!-----iables------------------------------------------------------
! EffectRange:the influence width of Delta function for each lagrange
! point
! NormalVector: the normal vector for each lagrange point
! Shapes: the surface point for analysis model
! ShapesForP: shape points for pressure interpolation of solid surface
! Cell_S: area of length for each cell of analysis model
! AV: effect matrices for velocity
! AT: effect matrices for temperature
! LagForce: lagrange forcing
! SurfaceUVW: the fluid velocity for solid surface lagrange points
! Aprocessor: (local)Effect matrices for each processor
! Atotal: temperal (global) effect matrices
! DuDt0: (local)velocity source for each processor
! DuDt1: temperal (global) velocity source
! DuDt: (global) velocity source
! .....................
! MeshX, MeshY, MeshZ: Cartesian Mesh grid coordinates
! DeltaX, DeltaY, DeltaZ: Cartesian grid size for each direction
! U0, V0, W0, P0, ROU0: the background flow field
! U, V, W, P, ROU: acoustic field variables
! Q1~4, F1~4, G1~4, H1~4: conservative variables
! .....................
! Sigma~ : the absorbing coefficient for each side
! Computational zone
! -----------------------------------------------------
! - - PML: SigmaY2 --
! -----------------------------------------------------
! - PML - - PML -
! - S - Main - S -
! - i - Zone - i -
! - g - - g -
! - m - - m -
! - aX1 - - aX2 -
! -----------------------------------------------------
! - - PML: SigmaY2 - -
! -----------------------------------------------------
!.......................
! Au1~, Au2~, Au3~: auxiliary variables for each direction
! S1~4: source term for PML equations
!-----intro------------------------------------------------------
!-----duction------------------------------------------------------
!
USE MPI
USE Constants_Model
USE BackgroundFlowField
USE VariableArtificialSelectiveDamping
IMPLICIT NONE
INTEGER:: I, J, k
! for lagrange points
INTEGER:: PLN
INTEGER, ALLOCATABLE:: EffectRange( :, : )
REAL(KIND=8), ALLOCATABLE:: NormalVector( :, : ), Shapes( :, : ), BodyCentre( :, : )
REAL(KIND=8), ALLOCATABLE:: BodyCentrePosition( :, : )
REAL(KIND=8), ALLOCATABLE:: BodyCentreVeloci( :, : )
REAL(KIND=8), ALLOCATABLE:: BodyCentreAcce( :, : )
REAL(KIND=8), ALLOCATABLE:: TangentialVector( :, : )
REAL(KIND=8), ALLOCATABLE:: InitialShapes( :, : )
REAL(KIND=8), ALLOCATABLE:: ShapesForP( :, : ), Cell_S( : )
REAL(KIND=8), ALLOCATABLE:: AV( :, : ), AT( :, : )
REAL(KIND=8), ALLOCATABLE:: LagForce( :, : ), SurfUVW( :, : )
REAL(KIND=8), ALLOCATABLE:: AProcessor( :, : ), ATotal( :, : )
REAL(KIND=8), ALLOCATABLE:: DuDt0( : ), DuDt1( : ), DuDt( : )
REAL(KIND=8), ALLOCATABLE:: DvDt0( : ), DvDt1( : ), DvDt( : )
REAL(KIND=8), ALLOCATABLE:: DwDt0( : ), DwDt1( : ), DwDt( : )
REAL(KIND=8), ALLOCATABLE:: DTDt0( : ), DTDt1( : ), DTDt( : )
REAL(KIND=8), ALLOCATABLE:: DRouDt0( : ), DRouDt1( : ), DRouDt( : )
INTEGER, ALLOCATABLE:: DuDtFlag( : ), DuDtFlagRoot( : )
REAL(KIND=8), ALLOCATABLE:: X01( :, : ), X02( :, : ), X03( :, : ), X04( :, : )
!
! for Cartesian grid information
REAL(KIND=8), ALLOCATABLE:: MeshX( : ), MeshY( : ), MeshZ( : )
REAL(KIND=8), ALLOCATABLE:: DeltaX( : ), DeltaY( : ), DeltaZ( : )
!
!
! acoustic field: nonconservative variables and conservative variables
! output to file for main processor
!
! calculation
REAL(KIND=8), ALLOCATABLE:: U( :, :, : ), V( :, :, : ), W( :, :, : )
REAL(KIND=8), ALLOCATABLE:: Omiga( :, :, : ), Mach( :, :, : )
REAL(KIND=8), ALLOCATABLE:: P( :, :, : ), ROU( :, :, : ), Te( :, :, : )
REAL(KIND=8), ALLOCATABLE:: Q1( :, :, : ), Q2( :, :, : )
REAL(KIND=8), ALLOCATABLE:: Q3( :, :, : ), Q4( :, :, : ), Q5( :, :, : )
REAL(KIND=8), ALLOCATABLE:: F1( :, :, : ), F2( :, :, : )
REAL(KIND=8), ALLOCATABLE:: F3( :, :, : ), F4( :, :, : ), F5( :, :, : )
REAL(KIND=8), ALLOCATABLE:: G1( :, :, : ), G2( :, :, : )
REAL(KIND=8), ALLOCATABLE:: G3( :, :, : ), G4( :, :, : ), G5( :, :, : )
REAL(KIND=8), ALLOCATABLE:: H1( :, :, : ), H2( :, :, : )
REAL(KIND=8), ALLOCATABLE:: H3( :, :, : ), H4( :, :, : ), H5( :, :, : )
!REAL(KIND=8), ALLOCATABLE:: MaskSignal( :, :, : ), BodyForceDistriX( :, :, : ), &
!& BodyForceDistriY( :, :, : )
REAL(KIND=8), ALLOCATABLE:: BodyForceDistriX_Out( :, :, : ), BodyForceDistriY_Out( :, :, : )
REAL(KIND=8), ALLOCATABLE:: CL_Temp(:), Cd_Temp(:)
REAL(KIND=8), ALLOCATABLE:: CL_output(:), Cd_output(:)
REAL(KIND=8), ALLOCATABLE:: Q2_Pre( :, :, : )
REAL(KIND=8), ALLOCATABLE:: Q3_Pre( :, :, : )
!REAL(KIND=8), ALLOCATABLE:: InertialForceX( : ), InertialForceY( : )
!
! ------shoch capturing filter related.
REAL(KIND=8), ALLOCATABLE:: Shock_Sigma( :, :, : )
!
! PML zone
REAL(KIND=8):: SigmaX1( -(NPML-1) : 0 )
REAL(KIND=8):: SigmaX2( 1 : NPML )
REAL(KIND=8):: SigmaY1( -(NPML-1) : 0 )
REAL(KIND=8):: SigmaY2( 1 : NPML )
REAL(KIND=8):: SigmaZ1( -(NPML-1) : 0 )
REAL(KIND=8):: SigmaZ2( 1 : NPML )
!!
!MPI variables definition
INTEGER:: IERR, NUMPROCS
INTEGER:: MYID, MYROOT
INTEGER:: MYLEFT, MYRIGHT, MYUPPER, MYLOWER, MYFORWARD, MYREAR
INTEGER:: PX, PY, PZ
INTEGER:: HTYPE, VTYPE
INTEGER:: XTYPE, YTYPE, ZTYPE
INTEGER:: YTYPE1
INTEGER, ALLOCATABLE:: STATUS( :, : ), REQ(:)
INTEGER:: COUNT1
INTEGER,ALLOCATABLE:: BLOCKLENS( : ), INDICES( : )
INTEGER:: SENDCNT
INTEGER, ALLOCATABLE:: RECVCNT( : )
INTEGER, ALLOCATABLE:: DISPLS( : )
!
! grid number for each processor( MPI )
! NA: ghost point for MPI information exchange
! Here using DRP scheme, NA = 3.
INTEGER:: XN1, YN2, ZN3
!
! coordinate transformation
REAL(KIND=8), ALLOCATABLE:: Jacobi( :, :, : )
REAL(KIND=8), ALLOCATABLE:: KexiX( : ), EitaY( : ), TaoZ( : )
!
! loop control variables
INTEGER:: Tstep0, I0, J0, K0, MaxTimeStep, Loops, Flag
REAL(KIND=8):: MaxResidual, MaxResidual0
!
! output flag
INTEGER:: IPX, IPY, IPZ
INTEGER:: SizeN1, SizeN2, SizeN3
INTEGER:: OUTPUTFlag, FLAG0, SIZE0, PmeanFlag, PrmsFlag
INTEGER:: SizeNumber(3)
INTEGER:: PmeanFlag1
CHARACTER(LEN=80):: FilenameINPUT, FilenameOUTPUT, FilenameFile
!
! evaluate the parallel efficiency
REAL(KIND=8):: STARTTIME, ENDTIME
!
!REAL(KIND=8):: FilterStartTime
REAL(KIND=8), ALLOCATABLE:: Yposition( :, : )
!
! restart parameter
INTEGER:: Res_Loops
!
! -------------added in Nov. 25, 2019, for periodic BCs
INTEGER:: NPML_Peri( 3, 2 )
! ------
REAL(KIND=8):: Ek, Entropy
REAL(KIND=8):: Ek_Sum, Entropy_Sum
!
! -------------------------wall temperature boundary condition-----------
! INTEGER:: WallTempBCFlag
! WallTempBCFlag = 0: Dirichlet BCs;
! WallTempBCFlag = 1: Neumann BCs;
!
! -------------------------evaluate the error of wall BCs----------------
REAL(KIND=8):: L2_Error_Average
!
!
REAL(KIND=8):: Temp(2), Temp1(2)
!
INTEGER:: BodyForceOutFlag
!
INTEGER:: OutputloadingFlag(2)
! ------------------------------------CUT-OFF LINE-------------------------
! -------------------------------------------------------------------------
!
! input the simulation parameter including the computational domain, MPI
! size ......
! CALL InitialModule( )
!
!
!!-------------------------------------STEP-1------------------------------
! -------------------------------------MPI PREPROCESSOR--------------------
!
!step- 1: initialize the parallel processors
CALL MPI_INIT( IERR )
CALL MPI_COMM_SIZE( MPI_COMM_WORLD, NUMPROCS, IERR )
CALL MPI_COMM_RANK( MPI_COMM_WORLD, MYID, IERR )
!
!
MYROOT = 0
!
!WRITE(*,*)MYID, 'Success!'
! input the simulation parameter including the computational domain, MPI
! size ......
CALL InitialModule( MYID, MYROOT )
!WRITE(*,*)MYID, 'Success!'
!WRITE(*, *) MYID, NPX, NPY, NPZ
!
!
! for data exchanger
ALLOCATE( RECVCNT( NUMPROCS ) )
ALLOCATE( DISPLS( NUMPROCS ) )
!
!
! for series I/O: output results( MPI_ISEND, MPI_IRECV )
IF ( MYID == MYROOT ) THEN
SIZE0 = NUMPROCS - 1
ALLOCATE( REQ( SIZE0 ) )
ALLOCATE( STATUS( MPI_STATUS_SIZE, SIZE0 ) )
ELSE
SIZE0 = 1
ALLOCATE( REQ( SIZE0:SIZE0 ) )
ALLOCATE( STATUS( MPI_STATUS_SIZE, SIZE0 ) )
END IF
!
!
IF ( ( NPX * NPY * NPZ ) .NE. NUMPROCS ) THEN
WRITE( *, * ) NPX, NPY, NPZ, 'The processor grid distribution doesn''t ', &
& ' conform with the processor summation! '
STOP
CALL MPI_FINALIZE( IERR )
END IF
!
!!
!get the current processor coordinates( PX, PY, PZ )
PZ = MYID / ( NPX * NPY )
PY = ( MYID - PZ * NPX * NPY ) / ( NPX )
PX = ( MYID - PZ * NPX * NPY ) - PY * NPX
!
!
!determine the topology relationship of all the processors
!!
MYLEFT = MYID - 1
IF ( BCFLAG == 0 ) THEN
IF ( MOD( MYID, NPX ) .EQ. 0 ) MYLEFT = MPI_PROC_NULL
ELSEIF ( BCFLAG == 1 ) THEN
IF ( MOD( MYID, NPX ) .EQ. 0 ) MYLEFT = NPX + MYLEFT
END IF
MYRIGHT = MYID + 1
IF ( BCFLAG == 0 ) THEN
IF ( MOD( MYRIGHT, NPX ) .EQ. 0 ) MYRIGHT = MPI_PROC_NULL
ELSEIF ( BCFLAG == 1 ) THEN
IF ( MOD( MYRIGHT, NPX ) .EQ. 0 ) MYRIGHT = MYRIGHT - NPX
END IF
MYREAR = MYID + NPX
IF ( BCFlag == 0 ) THEN
!
! free space for y direction: using PML boundary condition
IF ( MYREAR .GE. ( PZ+1 )*NPX*NPY ) MYREAR = MPI_PROC_NULL
ELSEIF( BCFlag == 1 ) THEN
!
! periodic boundary condition for y direction: using periodic bc
IF ( MYREAR .GE. ( PZ+1 )*NPX*NPY ) MYREAR = MYID - NPX * ( NPY - 1 )
END IF
MYFORWARD = MYID - NPX
IF ( BCFlag == 0 ) THEN
!
! free space for y -direction: using PML boundary condition
IF ( MYFORWARD .LT. PZ*NPX*NPY ) MYFORWARD = MPI_PROC_NULL
ELSEIF( BCFlag == 1 ) THEN
!
! periodic boundary condition for y direction: using periodic bc
IF ( MYFORWARD .LT. PZ*NPX*NPY ) MYFORWARD = MYID + NPX * ( NPY - 1 )
END IF
MYUPPER = MYID + NPX * NPY
IF ( BCFLAG == 0 ) THEN
IF ( MYUPPER .GE. NUMPROCS ) MYUPPER = MPI_PROC_NULL
ELSEIF ( BCFLAG == 1 ) THEN
IF ( MYUPPER .GE. NUMPROCS ) MYUPPER = MYUPPER - NUMPROCS
END IF
MYLOWER = MYID - NPX * NPY
IF ( BCFLAG == 0 ) THEN
IF( MYLOWER .LT. 0 ) MYLOWER = MPI_PROC_NULL
ELSEIF ( BCFLAG == 1 ) THEN
IF( MYLOWER .LT. 0 ) MYLOWER = MYLOWER + NUMPROCS
END IF
! ---------------------------------MPI PREPROCESSOR-------------------------
! ---------------------------------CUT-OFF LINE-----------------------------
!
!WRITE( *, FMT = "(7I3)" ) MYID, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYLOWER, MYUPPER
!
!CALL MPI_BARRIER( MPI_COMM_WORLD, IERR )
!!
!
! ----------------------------------STEP-2----------------------------------
! ----------------------------------READ ORIGINAL MODEL DATA----------------
OUTPUTFlag = 0
PmeanFlag = 0
PmeanFlag1 = 0
PrmsFlag = 0
FilenameINPUT = './INPUT/'
FilenameOUTPUT = './OUTPUT/'
FilenameFile = 'ShapesFile.dat'
!
!
!step- 2: read the number for surface mesh
IF ( MYID == MYROOT ) THEN
OPEN( UNIT = 10, FILE = TRIM( TRIM( FilenameINPUT ) // TRIM( FilenameFile ) ) )
READ( UNIT = 10, FMT = * ) NumBody
CLOSE( UNIT = 10 )
END IF
!
!!
!bcast LN to every processor
COUNT1 = 1
CALL MPI_BCAST( NumBody, COUNT1, MPI_INTEGER, MYROOT, &
& MPI_COMM_WORLD, IERR )
ALLOCATE( MultiLN( 1:NumBody ) )
!
!
IF ( MYID == MYROOT ) THEN
OPEN( UNIT = 10, FILE = TRIM( TRIM( FilenameINPUT ) // TRIM( FilenameFile ) ) )
READ( UNIT=10, FMT = * ) NumBody
READ( UNIT=10, FMT = * ) MultiLN( 1: NumBody )
CLOSE( UNIT = 10 )
LN = SUM( MultiLN )
END IF
COUNT1 = NumBody
CALL MPI_BCAST( MultiLN, COUNT1, MPI_INTEGER, MYROOT, &
& MPI_COMM_WORLD, IERR )
!
!
COUNT1 = 1
CALL MPI_BCAST( LN, COUNT1, MPI_INTEGER, MYROOT, &
& MPI_COMM_WORLD, IERR )
!
!!
!WRITE(*,*) MYID, 'SUCCESS'
!
! ---------------------------STEP-3-----------------------------------------------
! ---------------------------SOLID ARRAY SIZE DEFINITION--------------------------
!
!step- 3: allocate array variables for immersed body
! allocate variable related to the immersed boundary
ALLOCATE( EffectRange( LN, 6 ), NormalVector( LN, 3 ) )
ALLOCATE( Shapes( LN, 3 ), ShapesForP( LN, 3 ), Cell_S( LN ) )
ALLOCATE( InitialShapes( LN, 3 ) )
ALLOCATE( AV( LN, LN ), AT( LN, LN ) )
ALLOCATE( LagForce( LN, 3 ), SurfUVW( LN, 3 ) )
PLN = CEILING( 1.0d0 * LN / NUMPROCS )
ALLOCATE( AProcessor( LN, PLN ) )
ALLOCATE( ATotal( LN, NUMPROCS * PLN ) )
ALLOCATE( DuDt0( LN ), DvDt0( LN ), DwDt0( LN ), DTdT0( LN ), DRouDt0( LN ) )
ALLOCATE( DuDt( LN ), DvDt( LN ), DwDt( LN ), DTdT( LN ), DRouDt( LN ) )
ALLOCATE( DuDt1( LN ), DvDt1( LN ), DwDt1( LN ), DTDt1( LN ), DRouDt1( LN ) )
ALLOCATE( DuDtFlag( LN+1 ) )
ALLOCATE( DuDtFlagRoot( LN ) )
ALLOCATE( X01( LN, 1 ), X02( LN, 1 ), X03( LN, 1 ), X04( LN, 1 ) )
!
! -----------------wall temperature boundary condition -----------------
ALLOCATE( TangentialVector( LN, 3 ) )
ALLOCATE( BodyCentre( NumBody, 3 ) )
ALLOCATE( YPosition( NumBody, 3 ) )
ALLOCATE( BodyCentrePosition( NumBody, 3 ) )
ALLOCATE( BodyCentreVeloci( NumBody, 3 ) )
ALLOCATE( BodyCentreAcce( NumBody, 3 ) )
!
!
!!
!read the original body coordinates for the main processor
IF ( MYID == MYROOT ) THEN
OPEN( UNIT = 10, FILE = TRIM( TRIM( FilenameINPUT ) // TRIM( FilenameFile ) ) )
READ( UNIT = 10, FMT = * ) NumBody
READ( UNIT = 10, FMT = * ) MultiLN( 1: NumBody )
IF ( ModelFlag == 0 ) THEN
DO I = 1, LN
READ( UNIT = 10, FMT = * ) shapes( I, 1:3 )
END DO
Shapes( 1:LN , 3 ) = Centre( 3 )
ELSE
DO I = 1, LN
READ( UNIT = 10, FMT = * ) shapes( I, 1:3 )
END DO
END IF
CLOSE( UNIT = 10 )
END IF
!
!
! bcast the shapes to other processors
!bcast LN to every processor
COUNT1 = LN*3
CALL MPI_BCAST( Shapes(1,1), COUNT1, MPI_DOUBLE_PRECISION, MYROOT, &
& MPI_COMM_WORLD, IERR )
! ----------------------------------------------------------------------------------
! ----------------------------------------------------------------------------------
! ----------------------------STEP-4------------------------------------------------
! ----------------------------MODEL-------------------------------------------------
!step- 4: input the analysis model
!
CALL Models( LRef, R_PML0, Shapes, BodyCentre, NormalVector, TangentialVector, Cell_S, LN, &
& NumBody, MultiLN, AOA, Centre, ModelFlag, 0 )
InitialShapes = Shapes
!
!
!
!!----------------------------STEP-5-----------------------------------------------
! ---------------------------Mesh--------------------------------------------------
!
!step-5: get the size for Cartesian mesh
CALL GetMeshSize( N1, N2, N3, StartEnd, CutPoints, DeltaXYZ, &
& R_PML, R_PML0, Shapes, Cell_S, LN, Centre, MaxX, MaxY, &
& MaxZ, SolidRelativePosi, q0, LRef, UniformGridRatio, NPML, &
& NPX, NPY, NPZ, ModelFlag, BCFlag, MYID, FilenameOUTPUT )
!
ALLOCATE( CL( NumBody ), Cd( NumBody ) )
!
!get the mesh number for each processor
XN1 = ( 2 * NPML + N1 ) / NPX
YN2 = ( 2 * NPML + N2 ) / NPY
IF ( ModelFlag == 0 ) THEN
! 2-D Model
ZN3 = 1
ELSE
! 3-D Model
ZN3 = ( 2 * NPML + N3 ) / NPZ
END IF
!!
!
! ---------------------------------------STEP-6-------------------------------
! ---------------------------------Cartesian MESH ARRAY SIZE DEFINITION-------
!
!step-6: allocate array variables for Cartesian mesh of each processor
ALLOCATE( MeshX( -(NPML-1) : (N1+NPML) ) )
ALLOCATE( MeshY( -(NPML-1) : (N2+NPML) ) )
ALLOCATE( MeshZ( -(NPML-1) : (N3+NPML) ) )
ALLOCATE( DeltaX( -(NPML-1) : (N1+NPML-1) ) )
ALLOCATE( DeltaY( -(NPML-1) : (N2+NPML-1) ) )
ALLOCATE( DeltaZ( -(NPML-1) : (N3+NPML-1) ) )
ALLOCATE( Jacobi( -(NPML-1):(N1+NPML), -(NPML-1):(N2+NPML), -(NPML-1):(N3+NPML) ) )
ALLOCATE( KexiX( -(NPML-1) : ( N1 + NPML ) ) )
ALLOCATE( EitaY( -(NPML-1) : ( N2 + NPML ) ) )
ALLOCATE( TaoZ( -(NPML-1) : ( N3 + NPML ) ) )
ALLOCATE( U( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( V( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( W( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( Omiga( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( P( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( ROU( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( Te( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( Mach( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( Q1( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( Q2( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( Q3( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( Q4( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( Q5( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( F1( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( F2( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( F3( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( F4( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( F5( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( G1( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( G2( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( G3( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( G4( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( G5( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( H1( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( H2( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( H3( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( H4( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
ALLOCATE( H5( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
!!
ALLOCATE( Shock_Sigma( -(NA-1) : (XN1+NA), -(NA-1) : (YN2+NA), -(NA-1) : (ZN3+NA) ) )
!
!
! total variables for outputting to file in main processor
SizeN1 = N1 + 2 * NPML
SizeN2 = N2 + 2 * NPML
IF ( ModelFlag == 0 ) THEN
!
! 2-D Model
SizeN3 = 1
ELSE
!
! 3-D Model
SizeN3 = N3 + 2 * NPML
END IF
! ------
! ------
! create new datatype to output variables to file from each processor
! new datatype for sending process
COUNT1 = YN2 * ZN3
ALLOCATE( BLOCKLENS( COUNT1 ) )
ALLOCATE( INDICES( COUNT1 ) )
BLOCKLENS = XN1
DO J = 1, ZN3
DO I = 1, YN2
INDICES( YN2*(J-1)+I ) = (J-1) * (XN1+2*NA) * (YN2+2*NA) + (I-1) * (XN1+2*NA)
END DO
END DO
CALL MPI_TYPE_INDEXED( COUNT1, BLOCKLENS, INDICES, MPI_DOUBLE_PRECISION, HTYPE, IERR )
CALL MPI_TYPE_COMMIT( HTYPE, IERR )
!
!
! new datattype for receving process
DO J = 1, ZN3
DO I = 1, YN2
INDICES( YN2*(J-1)+I ) = (J-1) * SizeN1 * SizeN2 + (I-1) * SizeN1
END DO
END DO
CALL MPI_TYPE_INDEXED( COUNT1, BLOCKLENS, INDICES, MPI_DOUBLE_PRECISION, VTYPE, IERR )
CALL MPI_TYPE_COMMIT( VTYPE, IERR )
! --------
! --------
!
!
! ------------
! ------------
! create new datatype for data exchange on the boundary for each processor
!
! TYPE- 1: XTYPE ------for forward and rearward side data exchange
DEALLOCATE( BLOCKLENS, INDICES )
COUNT1 = NA * ZN3
ALLOCATE( BLOCKLENS( COUNT1 ) )
ALLOCATE( INDICES( COUNT1 ) )
BLOCKLENS = XN1
DO J = 1, ZN3
DO I = 1, NA
INDICES( NA*(J-1)+I ) = (J-1) * (XN1+2*NA) * (YN2+2*NA) + (I-1) * (XN1+2*NA)
END DO
END DO
CALL MPI_TYPE_INDEXED( COUNT1, BLOCKLENS, INDICES, MPI_DOUBLE_PRECISION, XTYPE, IERR )
CALL MPI_TYPE_COMMIT( XTYPE, IERR )
!
! TYPE- 2: YTYPE----------for left and right side data exchange
DEALLOCATE( BLOCKLENS, INDICES )
COUNT1 = YN2 * ZN3
ALLOCATE( BLOCKLENS( COUNT1 ) )
ALLOCATE( INDICES( COUNT1 ) )
BLOCKLENS = NA
DO J = 1, ZN3
DO I = 1, YN2
INDICES( YN2*(J-1)+I ) = (J-1) * (XN1+2*NA) * (YN2+2*NA) + (I-1) * (XN1+2*NA)
END DO
END DO
CALL MPI_TYPE_INDEXED( COUNT1, BLOCKLENS, INDICES, MPI_DOUBLE_PRECISION, YTYPE, IERR )
CALL MPI_TYPE_COMMIT( YTYPE, IERR )
!
! another type for Y
DEALLOCATE( BLOCKLENS, INDICES )
COUNT1 = ( YN2 + 2 * NA ) * ( ZN3 + 2 * NA )
ALLOCATE( BLOCKLENS( COUNT1 ) )
ALLOCATE( INDICES( COUNT1 ) )
BLOCKLENS = NA
DO J = 1, ZN3 + 2 * NA
DO I = 1, YN2 + 2 * NA
INDICES( (YN2+2*NA)*(J-1) + I ) = (J-1) * (XN1+2*NA) * (YN2+2*NA) + (I-1) * (XN1+2*NA)
END DO
END DO
CALL MPI_TYPE_INDEXED( COUNT1, BLOCKLENS, INDICES, MPI_DOUBLE_PRECISION, YTYPE1, IERR )
CALL MPI_TYPE_COMMIT( YTYPE1, IERR )
!
!
! TYPE- 3: ZTYPE ---------for upper and lower side data exchange
DEALLOCATE( BLOCKLENS, INDICES )
COUNT1 = YN2 * NA
ALLOCATE( BLOCKLENS( COUNT1 ) )
ALLOCATE( INDICES( COUNT1 ) )
BLOCKLENS = XN1
DO J = 1, NA
DO I = 1, YN2
INDICES( YN2*(J-1)+I ) = (J-1) * (XN1+2*NA) * (YN2+2*NA) + (I-1) * (XN1+2*NA)
END DO
END DO
CALL MPI_TYPE_INDEXED( COUNT1, BLOCKLENS, INDICES, MPI_DOUBLE_PRECISION, ZTYPE, IERR )
CALL MPI_TYPE_COMMIT( ZTYPE, IERR )
! -------------
!step- 7: grid generation
CALL Mesh( MeshX, MeshY, MeshZ, DeltaX, DeltaY, DeltaZ, N1, N2, N3, &
& NPML, StartEnd, CutPoints, DeltaXYZ, q0, ModelFlag, MYID, FilenameOUTPUT )
!
!
! mesh smoothing
CALL MeshSmoothing( MeshX, MeshY, MeshZ, DeltaX, DeltaY, DeltaZ, N1, &
& N2, N3, NPML, StartEnd, CutPoints, DeltaXYZ, q0, &
& LRef, UniformGridRatio, ModelFlag, MYID, MYROOT, &
& FilenameOUTPUT, 2 )
!
!
!
!step- 7.1: coordinate transformation/ get Jacobi matrix
CALL TransformCoordinate( Jacobi, KexiX, EitaY, TaoZ, MeshX, MeshY, MeshZ, &
& N1, N2, N3, NPML, DeltaXYZ, ModelFlag, CoorTransScheme )
!
!
!
! ---------------------------------------------STEP-8-------------------------------
! ---------------------------------------------BACKGROUND FLOW----------------------
!
!step- 8: get the background flow field1
CALL GetMeanFlow( U, V, W, P, ROU, NA, XN1, YN2, ZN3, MeshX, MeshY, MeshZ, &
& Centre, StartEnd, NPML, N1, N2, N3, PX, PY, PZ, NPX, NPY, NPZ, ModelFLag, &
& MYID, MYROOT, InitialFlag )
!!
!
!
! --------------------------------------STEP-9--------------------------------------
! -------------------------------------INITIALIZE FLOW FIELD------------------------
!
!step- 9: initialize acoutic field
CALL InitializeAcousticField( U, V, W, P, ROU, NA, XN1, YN2, &
& ZN3, MeshX, MeshY, MeshZ, NPML, N1, N2, N3, PX, PY, PZ, &
& NPX, NPY, NPZ, ModelFlag, SourceFlag )
!
!
!
!
!read the original body coordinates for the main processor
!
K0 = 0
DeltaT = DeltaXYZ * CFL / ( 1.0d0 + Ma )
!Tstep0 = floor( 1d0 / DeltaT )
!Tstep0 = 1
Tstep0 = CEILING( TimeOutInterval / DeltaT )
!
MaxTimeStep = CEILING( TotalTime / DeltaT )
!
SurfUVW = 0.0d0
! FilterStartTime = 0.1d0*MaxX
Yposition = 0.0d0
!
!
! -------------------------------------newly added in Nov. 30, 2019-----------
NPML_Peri = NPML
!
! revise the streamwise direction and vertical direction.
NPML_Peri( 1, 2 ) = N1 + NPML - N2
NPML_Peri( 3, 2 ) = N3 + NPML - N2
!
IF ( MYID == MYROOT ) THEN
DO I = 1, 3
WRITE( *, FMT = "(2I4)" ) NPML_Peri( I, 1 : 2 )
END DO
END IF
! -----------------------------------------------------------------------------
!
Q1 = 0.0d0
Q2 = 0.0d0
Q3 = 0.0d0
Q4 = 0.0d0
Q5 = 0.0d0
!
Res_Loops = 1
!
!
IF ( MYID == MYROOT ) THEN
OPEN( UNIT = 15, FILE = TRIM( TRIM( FilenameOUTPUT ) // TRIM( 'TKE.dat' ) ) )
WRITE( UNIT = 15, FMT = * ) "Time, Kinetic Energy, Enstrophy"
END IF
!
! output systematic parameters
!CALL PrintParameterSet( MYID, MYROOT, NUMPROCS, DeltaXYZ, DeltaT, Tstep0 )
!
IF ( MYID==MYROOT ) THEN
CALL CPU_TIME( STARTTIME )
END IF
!
! the device number 16~ can be used.
DO Loops = Res_Loops, MaxTimeStep
! -------------------------------
! ----------------body moving-----------------
!
CALL GetConservativeVariables( Q1, Q2, Q3, Q4, Q5, F1, F2, F3, F4, F5, &
& G1, G2, G3, G4, G5, H1, H2, H3, H4, H5, &
& U, V, W, P, ROU, NA, XN1, YN2, ZN3, Jacobi, KexiX, EitaY, TaoZ, &
& MeshX, MeshY, MeshZ, Beita, SigmaX1, SigmaX2, SigmaY1, SigmaY2, &
& SigmaZ1, SigmaZ2, NPML, N1, N2, N3, MYID, PX, PY, PZ, NPX, NPY, NPZ, &
& Loops, DeltaT, Loops*DeltaT, DeltaXYZ, ModelFlag, BCFlag, SourceFlag, VSADFLAG, NSFLAG )
!
!
! add diffusion term to the governing equations: viscosity
! term------ N-S equation
IF ( NSFLAG == 1 ) THEN
! Solve N-S equations
CALL ViscosityStressTerm( F2, F3, F4, F5, G2, G3, G4, G5, H2, H3, H4, H5, U, V, W, &
& P, ROU, NA, XN1, YN2, ZN3, Jacobi, KexiX, EitaY, TaoZ, NPML, NPML_Peri, N1, N2, N3, &
& DeltaXYZ, MYID, PX, PY, PZ, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, &
& MYUPPER, MYLOWER, XTYPE, YTYPE1, ZTYPE, NPX, NPY, NPZ, &
& ModelFlag, BCFLAG, DiffusiveScheme )
END IF
!
! CALL MPI_BARRIER( MPI_COMM_WORLD, IERR )
!END IF
Flag = MOD( Loops, 2 )
!Flag = 0
!
!
CALL LDDRK( Q1, Q2, Q3, Q4, Q5, F1, F2, F3, F4, F5, G1, G2, G3, G4, G5, &
& H1, H2, H3, H4, H5, U, V, W, P, ROU, Shock_Sigma, Jacobi, KexiX, EitaY, &
& TaoZ, MeshX, MeshY, MeshZ, SigmaX1, SigmaX2, SigmaY1, SigmaY2, SigmaZ1, &
& SigmaZ2, Beita, NA, XN1, YN2, ZN3, N1, N2, N3, NPML, NPML_Peri, DeltaT, DeltaXYZ, &
& Shapes, LN, PLN, Cell_S, NormalVector, InitialShapes, SurfUVW, StartEnd, &
& CutPoints, NumBody, MultiLN, PX, PY, PZ, NPX, NPY, NPZ, MYID, &
& MYROOT, NUMPROCS, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& XTYPE, YTYPE, YTYPE1, ZTYPE, Flag, Loops, VSADFLAG, ModelFlag, &
& BCFlag, SourceFlag, NSFLAG, CoupledFlag, FilterStartTime, &
& CoupledFilterFlag, ShockCapturingFilterFlag, ShockSensorFlag, &
& ShockFilterStencilFlag, BodyForceSolverFlag, DistriFlag, &
& ConvectiveScheme, DiffusiveScheme )
!!
!
CALL ExchangeInterfaceDataNew( Q1, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL ExchangeInterfaceDataNew( Q2, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL ExchangeInterfaceDataNew( Q3, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
IF ( ModelFlag == 1 ) THEN
CALL ExchangeInterfaceDataNew( Q4, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
END IF
!
CALL ExchangeInterfaceDataNew( Q5, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!!
!------------------------------------------------------------------------------------
! -----------------------------------------------------------------------------------
!
IF ( ( FilterFLAG == 1 ) .AND. MOD(Loops, 1) == 1 ) THEN
! get the revised conservative variables and then filter the
! conservative variables
!
! x- direction filter
! excute the explicit filtering for the conservative variables.
CALL Filter( Q1, Q2, Q3, Q4, Q5, NA, XN1, YN2, ZN3, ModelFlag, DeltaT*Loops, &
& FilterStartTime, NPML, PX, PY, PZ, NPX, NPY, NPZ, 0 )
!
! exchange the virtual mesh variables.
CALL ExchangeInterfaceDataNew( Q1, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL ExchangeInterfaceDataNew( Q2, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
CALL MPI_BARRIER( MPI_COMM_WORLD, IERR )
!
CALL ExchangeInterfaceDataNew( Q3, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
IF ( ModelFlag == 1 ) THEN
CALL ExchangeInterfaceDataNew( Q4, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
END IF
!
CALL ExchangeInterfaceDataNew( Q5, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
! y-direction filter
! excute the explicit filtering for the conservative variables.
CALL Filter( Q1, Q2, Q3, Q4, Q5, NA, XN1, YN2, ZN3, ModelFlag, DeltaT*Loops, &
& FilterStartTime, NPML, PX, PY, PZ, NPX, NPY, NPZ, 1 )
!
! exchange the virtual mesh variables.
CALL ExchangeInterfaceDataNew( Q1, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL ExchangeInterfaceDataNew( Q2, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL ExchangeInterfaceDataNew( Q3, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL MPI_BARRIER( MPI_COMM_WORLD, IERR )
IF ( ModelFlag == 1 ) THEN
CALL ExchangeInterfaceDataNew( Q4, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
END IF
!
CALL ExchangeInterfaceDataNew( Q5, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
!
IF ( ModelFlag == 1 ) THEN
! z direction
! added in 2 Dec. 2019
CALL Filter( Q1, Q2, Q3, Q4, Q5, NA, XN1, YN2, ZN3, ModelFlag, DeltaT*Loops, &
& FilterStartTime, NPML, PX, PY, PZ, NPX, NPY, NPZ, 2 )
!
! exchange the virtual mesh variables.
CALL ExchangeInterfaceDataNew( Q1, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL ExchangeInterfaceDataNew( Q2, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL ExchangeInterfaceDataNew( Q3, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
CALL MPI_BARRIER( MPI_COMM_WORLD, IERR )
IF ( ModelFlag == 1 ) THEN
CALL ExchangeInterfaceDataNew( Q4, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
END IF
!
CALL ExchangeInterfaceDataNew( Q5, NA, XN1, YN2, ZN3, NPML, NPML_Peri, XTYPE, YTYPE1, &
& ZTYPE, MYLEFT, MYRIGHT, MYFORWARD, MYREAR, MYUPPER, MYLOWER, &
& PX, PY, PZ, NPX, NPY, NPZ, ModelFlag, BCFlag, 1 )
!
END IF
!
END IF
CALL GetOriginalVariables( U, V, W, P, ROU, Q1, Q2, Q3, Q4, Q5, NA, &
& XN1, YN2, ZN3, Jacobi, KexiX, EitaY, TaoZ, MeshX, MeshY, MeshZ, N1, N2, N3, &
! & PX, PY, PZ, NPX, NPY, NPZ, NPML, DeltaT*(Loops+1.0), ModelFlag, 0 )
& PX, PY, PZ, NPX, NPY, NPZ, NPML, DeltaT*Loops, ModelFlag, 0 )
!
!
!
CALL ObtainKineticEnergy( Ek, Entropy, U, V, W, ROU, XN1, YN2, ZN3, NA, NPML, NPML_Peri, &
& MaxX, MaxY, MaxZ, DeltaXYZ, PX, PY, PZ, NPX, NPY, NPZ, ModelFlag )
!
!
IF ( MOD( Loops, 5 ) == 0 ) THEN
!
CALL MPI_REDUCE(Ek, Ek_Sum, 1, MPI_DOUBLE_PRECISION, MPI_SUM, MYROOT, MPI_COMM_WORLD, IERR)
!
CALL MPI_REDUCE(Entropy, Entropy_Sum, 1, MPI_DOUBLE_PRECISION, MPI_SUM, MYROOT, MPI_COMM_WORLD, IERR)
!
IF ( MYID == MYROOT ) THEN
WRITE( UNIT = 15, FMT = '(3F18.12)' ) Loops*DeltaT*Ma, Ek_Sum/Ma**2, Entropy_Sum/Ma**2
END IF
END IF
!
!
!
IF ( ( ( MOD( Loops, Tstep0 )==0 ) .AND. Loops <= floor(0.5d0*TotalTime/DeltaT) ) .OR. &
& ( ( MOD( Loops, Tstep0 )==0 ) .AND. Loops >= floor(0.9d0*TotalTime/DeltaT) ) ) THEN
!IF ( 1 == 1 ) THEN
OUTPUTFlag = OUTPUTFlag + 1
! output U
SizeNumber( 1 ) = 1
SizeNumber( 2 ) = 1
SizeNumber( 3 ) = 1
!
!
! get vorticity omiga
IF ( ModelFlag == 0 ) THEN
! 2-D
DO J = 1, YN2
DO I = 1, XN1
Omiga( I, J, 1 ) = KexiX(I+PX*XN1-NPML) * ( V(I+1, J, 1) - V(I-1, J, 1) ) &
& / (2.0d0 * DeltaXYZ) - EitaY(J+PY*YN2-NPML) * &
& ( U(I, J+1, 1)-U(I, J-1, 1) ) / ( 2.0d0 * DeltaXYZ )
END DO
END DO
ELSE
! 3-D
DO K = 1, ZN3
DO J = 1, YN2
DO I = 1, XN1
Omiga( I, J, K ) = ( V(I+1, J, K) - V(I-1, J, K) ) / (2.0d0 * DeltaXYZ) - &
& ( U(I, J+1, K)-U(I, J-1, K) ) / ( 2.0d0 * DeltaXYZ )
END DO
END DO
END DO
END IF
!
! CALL MPI_BARRIER( MPI_COMM_WORLD, IERR )
END IF
!
END DO
!
IF ( MYID==MYROOT ) THEN
CALL CPU_TIME( ENDTIME )
WRITE(*,FMT='(f24.14)' )ENDTIME-STARTTIME
END IF
!
IF ( MYID == MYROOT ) THEN
CLOSE( UNIT = 15 )
END IF
!
! -----------------------------------------------------------------------
!--------------- outer loops end! --------- -
! -
! -----------------------------------------------------------------------
!
!!
!step- 11: return and exit
CALL MPI_FINALIZE( IERR )
END PROGRAM AcousticScatteringParallelComputing