forked from CRPropa/CRPropa3-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_electromagnetic.py
146 lines (126 loc) · 5.4 KB
/
calc_electromagnetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from numpy import *
import interactionRate
import photonField
eV = 1.60217657e-19 # [J]
me2 = 0.510998918e6**2 # squared electron mass [eV^2/c^4]
sigmaThompson = 6.6524e-29 # Thompson cross section [m^2]
alpha = 1. / 137.035999074 # fine structure constant
def sigmaPP(s):
"""
Pair production cross section (Bethe-Heitler), see Lee 1996.
Returns cross sections [1/m^2] for chosen s range [J^2].
"""
if (s < 4.*me2 * eV**2):
return 0.
else:
beta = sqrt(1 - 4*me2 * eV**2 /s)
return sigmaThompson * 3./16.*(1-beta**2)*((3-beta**4)*log((1+beta)/(1-beta))-2*beta*(2-beta**2))
def sigmaICS(s):
"""
Inverse Compton scattering cross sections, see Lee 1996.
Returns cross sections [1/m^2] for chosen s range [J^2].
"""
if (s < 1.0 * me2 *eV**2):
return 0.
else:
beta = (s - me2 *eV**2)/(s + me2 *eV**2)
return sigmaThompson * 3./8. * me2 * eV**2 / s / beta * (2./beta/(1+beta)*(2.+2.*beta-beta**2-2.*beta**3)-1./beta**2 * (2.-3.*beta**2- beta**3)*log((1.+beta)/(1.-beta)))
def sigmaTPP(s):
"""
Triplet-pair production cross section, see Lee 1996.
Returns cross sections [1/m^2] for chosen s range [J^2].
"""
if (28/9*log(s/me2 /eV**2)- 218./27. < 0.):
return 0.
else:
return sigmaThompson *3.*alpha/8./pi*(28/9*log(s/me2 /eV**2)- 218./27.)
def sigmaDPP(s):
"""
Double-pair production cross section, see R.W. Brown eq. (4.5) with k^2 = q^2 = 0.
Returns cross sections [1/m^2] for chosen s range [J^2].
"""
if (s < 16 * me2 * eV **2):
return 0.
else:
# exponent = 1 instead of 6 results in better reproduction of EleCa data
return 6.45*1e-34 *(1.- 16.*me2 *eV**2 / s)**6
# ----------------------------------------------------------------
# Interaction rates
# ----------------------------------------------------------------
print ('Calculate interaction rates')
def saveRate(E, sigma, skin, field, name):
s = skin.copy()
if (name == 'EMInverseComptonScattering' or name == 'EMTripletPairProduction'):
s += me2 * eV**2
xs = array([sigma(si) for si in s])
rate = interactionRate.calc_rate_s(skin, xs, E, field)
data = c_[log10(E / eV), rate]
fname = 'data/%s_%s.txt' % (name, field.name)
header = 'log10(E/eV)\t1/lambda [1/Mpc]\n%s\n' % field.info
fmt = '%.2f\t%.6e'
savetxt(fname, data, fmt=fmt, header=header)
# Mandelstam s - (mc^2)^2
# important: tabulate skin in logspace and add resp. mass term to obtain s
# because the integration carried out requires logspaced skin values.
# Otherwise (logspace s from mass term to 10**23 eV and subtract mass term
# to obtain skin) skin is not logspaced for small values.
skin1 = logspace(log10(1E7*eV**2), log10( 10E23*eV**2), 1025) # photons
skin2 = logspace(log10(1E7*eV**2), log10((10E23-me2)*eV**2), 1025) # electrons
E = logspace(15, 23, 801) * eV # energy range of interacting particle
fields = [
photonField.CMB(),
photonField.URB_Protheroe96(),
photonField.EBL_Kneiske04(),
photonField.EBL_Stecker05(),
photonField.EBL_Franceschini08(),
photonField.EBL_Finke10(),
photonField.EBL_Dominguez11(),
photonField.EBL_Gilmore12()
]
for field in fields:
print (field.name)
saveRate(E, sigmaPP, skin1, field, 'EMPairProduction')
saveRate(E, sigmaDPP, skin1, field, 'EMDoublePairProduction')
saveRate(E, sigmaICS, skin2, field, 'EMInverseComptonScattering')
saveRate(E, sigmaTPP, skin2, field, 'EMTripletPairProduction')
# ----------------------------------------------------------------
# Cumulative differential interaction rates
# ----------------------------------------------------------------
print ('Calculate cumulative differential interaction rates')
def saveCDF(E, sigma, skin, field, name):
s = skin.copy()
if name in ('EMInverseComptonScattering_CDF', 'EMTripletPairProduction_CDF'):
s += me2 * eV**2
xs = array([sigma(si) for si in s])
rate = interactionRate.calc_diffrate_s(skin, xs, E, field)
lE = repeat(log10(E/eV), len(skin))
ls = repeat(log10(skin/eV**2)[newaxis,:], len(E), axis=0).flatten()
data = c_[lE, ls, rate]
fname = 'data/%s_%s.txt' % (name, field.name)
header = 'log10(E/eV)\tlog10(s_kin/eV^2)\t(1/lambda)_cumulative [1/Mpc]\n%s\n' % field.info
fmt = '%.2f\t%.5e\t%.5e'
savetxt(fname, data, fmt=fmt, header=header)
skin1 = logspace(log10(1E7*eV**2), log10( 1E23*eV**2), 500)
skin2 = logspace(log10(1E7*eV**2), log10((1E23-me2)*eV**2), 500)
E = logspace(15, 23, 81) * eV # energy range of interacting particle
fields = [
photonField.CMB(),
photonField.EBL_Kneiske04(),
photonField.EBL_Stecker05(),
photonField.EBL_Franceschini08(),
photonField.EBL_Finke10(),
photonField.EBL_Dominguez11(),
photonField.EBL_Gilmore12()
]
for field in fields:
print (field.name)
saveCDF(E, sigmaPP, skin1, field, 'EMPairProduction_CDF')
saveCDF(E, sigmaICS, skin2, field, 'EMInverseComptonScattering_CDF')
saveCDF(E, sigmaTPP, skin2, field, 'EMTripletPairProduction_CDF')
# Consider different s-range for URB
field = photonField.URB_Protheroe96()
skin1 = logspace(log10(1E7*eV**2), log10( 1E17 * eV**2), 500)
skin2 = logspace(log10(1E7*eV**2), log10((1E17 - me2)*eV**2), 500)
saveCDF(E, sigmaPP, skin1, field, 'EMPairProduction_CDF')
saveCDF(E, sigmaICS, skin2, field, 'EMInverseComptonScattering_CDF')
saveCDF(E, sigmaTPP, skin2, field, 'EMTripletPairProduction_CDF')