forked from CRPropa/CRPropa3-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalc_decay.py
422 lines (350 loc) · 12.4 KB
/
calc_decay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from numpy import *
import crpropa as crp
from scipy.integrate import quad
# Script to preprocess the nuclear decay data table from the BNL NuDat2 database
# Decay Search: http://www.nndc.bnl.gov/nudat2/indx_sigma.jsp, output: formatted file --> decay_NuDat2.txt
# Decay Radiation Search: gamma_NuDat2.txt: http://www.nndc.bnl.gov/nudat2/indx_dec.jsp --> gamma_NuDat2.txt
class Decay:
def load(self, s):
l = s.split('\t')
self.Z = int(l[2])
self.N = int(l[3])
self.id = self.Z * 1000 + self.N
# mode
self.mode = l[12].strip()
# decay time
s = l[9].strip()
if s == 'infinity':
self.tau = inf
elif s == '':
self.tau = 0
else:
self.tau = float(s) / log(2) # half-life --> life time
# branching ratio
s = ''.join(c for c in l[13] if c not in ('>','<','=','~','%',' ','?','\n'))
self.brString = s
if s == '':
self.br = 0.
else:
self.br = float(s) / 100. # % --> fraction
def __str__(self):
return 'Z=%i N=%i mode=%s tau=%.1e br=%.2f' % (self.Z, self.N, self.mode, self.tau, self.br)
def isStable(self):
return self.tau == inf
def isBetaPlus(self):
return self.mode.find('E') > -1
def isBetaMinus(self):
return self.mode.find('B') > -1
class GammaEmission:
def __init__(self, lines):
l = lines[0].split('\t')
self.Z = int(l[2])
self.N = int(l[3])
self.id = self.Z * 1000 + self.N
self.mode = l[7].strip()
self.energy = []
self.intensity = []
for line in lines:
l = line.split('\t')
self.energy.append(float(l[13]))
self.intensity.append(float(l[17]))
def __str__(self):
s = 'Z = %i N = %i mode = %s' % (self.Z, self.N, self.mode)
for i in range(len(self.energy)):
s += '\n energy = %.3f intensity = %.3e' % (self.energy[i], self.intensity[i])
return s
### parse gamma emission data file
print '\nParsing gamma emission data file'
print '-------------------------------------'
data = open('tables/gamma_NuDat2.txt')
lines = data.readlines()[1:-3] # skip header and footer
data.close()
# create list of gamma emission entries for each isotope
gammaTable = [[{} for n in range(31)] for z in range(27)]
for i, line in enumerate(lines):
l = line.split('\t')
Z = int(l[2])
N = int(l[3])
mode = l[7].strip()
if (Z > 26) or (N > 30): # skip if higher than Fe-56
continue
if (mode == 'IT'): # skip isomeric transition
continue
if (l[4].strip() == '0+X' or float(l[4]) > 0): # skip if parent nuclei in excited state
continue
if (l[11].strip() != 'G'): # take only gamma radiation type
continue
if (l[12].strip() != ''): # ionized nuclei: no Auger electrons, conversion electrons and annihilation
continue
gammaTable[Z][N].setdefault(mode, []).append(line)
# for each isotope and decay mode combine all gamma entries
for Z in range(27):
for N in range(31):
if not(gammaTable[Z][N]): # no entry
continue
for mode, entries in gammaTable[Z][N].items():
gammaTable[Z][N][mode] = GammaEmission(entries)
### explicitly edit some entries
print '\nExplicitly editing certain entries'
print '-------------------------------------'
# for beta-n decay of Na-27 photon emission probability is 100% if decay happens
g0 = gammaTable[11][16]['B-N']
g0.intensity[0] = 100.
print g0, ' <- set photon emission probability to 100%\n'
# renormalize emission probability for beta+ decay of K-40 (BR = 10.86%, intensity = 10.66% -> emission prob if decay happens = 98.16%)
g0 = gammaTable[19][21]['EC']
g0.intensity[0] = 98.16
print g0, ' <- renormalize photon emission probability to 98.16%\n'
# remove one of two tabulated beta- decays for K-46
g0 = gammaTable[19][27]['B-']
print g0,'\n'
takeIndex = [2,3,4,7,9,11]
energy = []
intensity = []
for i in takeIndex:
energy.append(g0.energy[i])
intensity.append(g0.intensity[i])
g0.intensity = intensity
g0.energy = energy
print g0, ' <- removed additional beta- decay with same properties\n'
# for beta- and beta+ decay of V-50 emission probability of photon is 100% if decay happens
g0 = gammaTable[23][27]['B-']
g1 = gammaTable[23][27]['EC']
g0.intensity[0] = 100.
g1.intensity[0] = 100.
print g0, ' <- set photon emission probability to 100%\n'
print g1, ' <- set photon emission probability to 100%\n'
### parse decay data file
print '\nParsing decay data file'
print '-------------------------------------'
fin = open('tables/decay_NuDat2.txt')
lines = fin.readlines()
fin.close()
decayTable = [[[] for n in range(31)] for z in range(27)]
for line in lines[1:-3]:
d = Decay()
d.load(line)
if (d.Z > 26) or (d.N > 30):
continue
if d.mode == 'IT':
print d, '<- skip (isomeric transition)'
continue
if d.tau == 0:
print d, '<- skip (missing lifetime)'
continue
if d.mode == '':
if not(d.isStable()):
print d, '<- skip (missing decay mode)'
continue
decayTable[d.Z][d.N].append(d)
### remove duplicate decays
print '\n\nRemoving duplicates'
print '-------------------------------------'
for z in range(27):
for n in range(31):
dList = decayTable[z][n]
if len(dList) < 2:
continue
for i, d1 in enumerate(dList):
for d2 in dList[i+1:]:
if d1.mode == d2.mode:
print d1
print d2, ' <- remove \n'
dList.remove(d2)
### explicitly edit some entries
print '\nExplicitly editing certain entries'
print '-------------------------------------'
# remove Li-5 alpha decay (equivalent to existing proton emission)
d0 = decayTable[3][2][0]
d1 = decayTable[3][2][1]
print d0
print d1, ' <- remove (equivalent to neutron emission)\n'
decayTable[3][2].remove(d1)
# remove He-5 alpha decay (equivalent to existing neutron emission)
d0 = decayTable[2][3][0]
d1 = decayTable[2][3][1]
print d1
print d0, ' <- remove (equivalent to neutron emission)\n'
decayTable[2][3].remove(d0)
# modify B-12 "B3A" decay to "B2A" as it would leave an empty nucleus
d = decayTable[5][7][1]
print d, ' <- change decay mode to B2A\n'
d.mode = 'B2A'
# Fe-45: to make beta+ decays exclusive
d = decayTable[26][19][0]
print d, ' <- set branching ratio to 0 (ratio equal to sum of following ratios)'
d.br = 0
brSum = 0
for d in decayTable[26][19][1:]:
print d
brSum += d.br
for d in decayTable[26][19][1:]:
d.br /= brSum
### calculate exclusive mean life times
print '\n\nCalculating exclusive life times'
print '-------------------------------------'
for z in range(27):
for n in range(31):
dList = decayTable[z][n]
# skip for 0 or 1 entry
if len(dList) < 2:
continue
# get sum of branching ratios
brSum = 0
for d in dList:
brSum += d.br
# if sum is 0, set branching ratios to equal values
if brSum == 0:
for d in dList:
d.br = 1. / len(dList)
# else if sum not 1, search for an inclusive decay and/or normalize the branching ratios
elif brSum != 1.:
dInclusive = None
brSumExclusive = 0
for i,d in enumerate(dList):
if d.br == 1.0:
dInclusive = d # inclusive decay found
else:
brSumExclusive += d.br # add exclusive branching ratio
if dInclusive != None:
if dInclusive.br <= brSumExclusive:
dList.remove(dInclusive) # remove if purely inclusive
else:
dInclusive.br -= brSumExclusive # else make exclusive
# normalize all branching ratios
for d in dList:
d.br /= brSum
# finally, calculate exclusive decay time by dividing with branching ratio, while removing zeros
for d in dList:
if d.br == 0:
print d, ' <- remove (branching ratio 0)'
dList.remove(d)
else:
d.tau /= d.br
### correct for electron capture contribution in beta+ decays
# see Basdevant, Fundamentals in Nuclear Physics, 4.3.2 and 4.3.3
print '\nBeta+ correction'
print '-------------------------------------'
Qe = crp.mass_electron * crp.c_squared # electron energy [J]
a0 = 5.29177e-11 # Bohr radius [m]
hbar_c = crp.c_light * (crp.h_planck / 2 / pi) # [m/J]
for Z in range(27):
for N in range(31):
for d in decayTable[Z][N]:
if not(d.isBetaPlus()):
continue
A = Z+N
m1 = crp.nuclearMass(A, Z)
m2 = crp.nuclearMass(A, Z-1)
dm = (m1 - m2) * crp.c_squared
Qec = (dm + Qe)
Qbeta = (dm - Qe)
# check if energetically possible
if Qbeta < 0:
print d, ' <- make stable (beta+ decay not possible)'
d.tau = inf
continue
f = lambda E: E * sqrt(E**2 - Qe**2) * (dm - E)**2
I, Ierr = quad(f, Qe, dm)
# ratio tau_beta+ / tau_ec
f = pi**2 / 2 * (Z/a0*hbar_c)**3 * Qec**2 / I
if f < 0:
print Qec
print I1(Q/Qe)
print d, ' <- beta+ correction %.1e'%f
d.tau *= 1 + f
### set immediate proton / neutron dripping for all other isotopes
print '\n\nSet proton / neutron dripping for all other isotopes'
for z in range(0,27):
for n in range(0,31):
if (z + n)==0:
continue
dList = decayTable[z][n]
if len(dList) > 0:
continue
# else set p/n dripping
d = Decay()
d.Z = z
d.N = n
d.tau = 1e-99
d.br = 1.
if z > n: # proton dripping
d.mode = 'P'
else: # neutron dripping
d.mode = 'N'
dList.append(d)
### save decay table
fout = open('data/nuclear_decay.txt','w')
fout.write('# Z, N, Decay Mode (#beta- #beta+ #alpha #p #n), Mean Life Time [s], Gamma Energy 1 [keV], Gamma Emission Probability 1, Gamma Energy 2 [keV], Gamma Emission Probability 2, ...\n')
# decay mode codes: #beta- #beta+ #alpha #p #n
modeDict = {'STABLE' : '0',
'N' : '00001',
'2N' : '00002',
'P' : '00010',
'2P' : '00020',
'A' : '00100',
'2A' : '00200',
'B-' : '10000',
'2B-': '20000',
'BN' : '10001',
'B-N': '10001',
'B2N': '10002',
'B3N': '10003',
'B4N': '10004',
'BNA': '10101',
'BA' : '10100',
'B2A': '10200',
'B3A': '10300',
'B+' : '01000',
'EC' : '01000',
'2EC': '02000',
'EA' : '01100',
'EP' : '01010',
'E2P': '01020',
'E3P': '01030'}
for Z in range(27):
for N in range(31):
if (Z + N) == 0:
continue
for d in decayTable[Z][N]:
if d.isStable():
continue
mode = modeDict[d.mode]
s = '%i %i %s %e' % (Z, N, mode, d.tau)
for key in gammaTable[Z][N].keys():
if modeDict[key] != mode:
continue
g = gammaTable[Z][N][key]
for i in range(len(g.energy)):
s += ' %e %e'%(g.energy[i], g.intensity[i]/100.)
fout.write(s + '\n')
fout.close()
### save isotopes with tau > 2 s to consider for photo-disintegration
# this is not needed for CRPropa
fout = open('data/isotopes-2s.txt', 'w')
fout.write('# Z\tN\tA\n')
fout.write('# isotopes with lifetime > 2s (including beta+ correction, see calc_decay.py)\n')
for z in range(1,27):
for n in range(1,31):
if (z + n)==0:
continue
c = 0 # total decay constant
for d in decayTable[z][n]:
c += 1 / d.tau
if c < 1/2.: # check for tau < 2 s
fout.write('%i\t%i\t%i\n' % (z, n, z+n))
fout.close()
### save stable isotopes
# this is not needed for CRPropa
fout = open('data/isotopes-stable.txt', 'w')
fout.write('# Z\tN\tA\n')
fout.write('# stable isotopes (including beta+ correction, see calc_decay.py)\n')
for z in range(1,27):
for n in range(1,31):
if (z + n)==0:
continue
for d in decayTable[z][n]:
if d.tau != inf:
continue
fout.write('%i\t%i\t%i\n' % (z, n, z+n))
fout.close()