forked from Hzfinfdu/Diffusion-BERT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample.py
42 lines (30 loc) · 1.49 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import abc
class SampleClassBase(abc.ABC):
def sample(self, logits, x_0):
raise NotImplementedError
def post_process_sample_in_prediction(self, sample, x_0):
return sample
class Categorical(SampleClassBase):
def sample(self, logits, x_0):
return torch.distributions.categorical.Categorical(logits=logits).sample()
class WholeWordMasking(SampleClassBase):
def __init__(self, tokenizer):
self.dim = tokenizer.vocab_size
self.mask_id = tokenizer.mask_token_id
self.post_tokens = torch.zeros(size=(tokenizer.vocab_size,), device='cuda:0', dtype=torch.long)
for token, id in tokenizer.vocab.items():
if token.startswith('##'):
self.post_tokens[id] = 1
def sample(self, logits, x_0):
is_post = (self.post_tokens * x_0).sum(-1).nonzero()
samp = torch.distributions.categorical.Categorical(logits=logits).sample()
for index in is_post:
samp[index[0], index[1]] = self.mask_id if samp[index[0], index[1] - 1] == self.mask_id else x_0[index[0], index[1]].argmax()
return samp
def post_process_sample_in_prediction(self, sample, x_0):
x_0 = torch.nn.functional.one_hot(x_0, num_classes=self.dim)
is_post = (self.post_tokens * x_0).sum(-1).nonzero()
for index in is_post:
sample[index[0], index[1]] = self.mask_id if sample[index[0], index[1] - 1] == self.mask_id else x_0[index[0], index[1]].argmax()
return sample