-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtagger.py
executable file
·310 lines (268 loc) · 11.5 KB
/
tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/bin//python
from feats import Feats
import scipy.sparse
from scipy.sparse import csc_matrix
import numpy as np
import struct_perceptron
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import *
from viterbi import run_viterbi
class Tagger:
"""Parent class for taggers, supports training, tagging and evaluation."""
def tag_sent(self, sent):
"""Tag sentence with the predicted labels."""
pass
def fit_data(self, sents, labels):
"""Learn the parameters of the model from the given labeled data."""
pass
def tag_sent(self, sent):
"""Predict the best tags for a sequence."""
pass
def tag_data(self, sents):
"""Tag all the sentences in the list of sentences."""
pred = []
for s in sents:
pred.append(self.tag_sent(s))
return pred
def evaluate_data(self, sents, labels, quite=False):
"""Evaluates the tagger on the given corpus of sentences and the set of true labels."""
preds = self.tag_data(sents)
assert len(preds) == len(labels)
# Compute tokenwise predictions and labels
all_preds = []
all_labels = []
for i in xrange(len(preds)):
assert len(preds[i]) == len(labels[i])
for p in preds[i]:
all_preds.append(p)
for l in labels[i]:
all_labels.append(l)
if not quite:
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
print "Token-wise accuracy", accuracy_score(all_labels, all_preds)*100
print "Token-wise F1 (macro)", f1_score(all_labels, all_preds, average='macro')*100
print "Token-wise F1 (micro)", f1_score(all_labels, all_preds, average='micro')*100
print "Sentence-wise accuracy", accuracy_score(map(lambda ls: ''.join(ls), labels), map(lambda ls: ''.join(ls), preds))*100
print classification_report(all_labels, all_preds)
return preds
class LogisticRegressionTagger(Tagger):
"""A simple logistic regression based classifier.
Converts the sequence labeling task to independent per-token classification.
The features for each token are generated using a feats.Feats() object.
"""
def __init__(self, feats = Feats()):
self.feats = feats
self.cls = LogisticRegression()
self.le = preprocessing.LabelEncoder()
def tag_sent(self, sent):
"""Returns the predicted tags of a sentence.
input: a sentence as a list of strings.
output: predicted labels as a list of string.
"""
fvs = []
for i in xrange(len(sent)):
fidxs = self.feats.token2fidxs(sent, i)
fv = self.idxs2featurevector(fidxs)
fvs.append(fv)
X = scipy.sparse.vstack(fvs)
y = self.cls.predict(X)
return self.le.inverse_transform(y)
def idxs2featurevector(self, idxs):
"""Given the indexes of the features, construct a sparse feature vector."""
assert self.feats.frozen == True
fdata = np.full((len(idxs)), True, dtype=np.bool)
frow = np.full((len(idxs)), 0, dtype=np.int32)
fv = csc_matrix((fdata, (frow, idxs)), dtype=np.bool, shape=(1,self.feats.num_features))
return fv
def fit_data(self, sents, labels):
"""Train the tagger on the given dataset.
The input is a sequence of sentences and corresponding labels,
where each sentence and sequence of labels are lists of strings.
"""
# get the set of all the labels
all_labels = []
for ls in labels:
for l in ls:
all_labels.append(l)
# transform it to a list of classes
# size N (number of total tokens)
y = self.le.fit_transform(all_labels)
print y.shape
# get the feature indices
# list of size N (number of total tokens)
Xidxs = self.feats.index_data(sents)
print "Features computed"
# convert to feature vectors
# list of size N
Xfeats = []
for sentIdxs in Xidxs:
for tokIdxs in sentIdxs:
Xfeats.append(self.idxs2featurevector(tokIdxs))
# stack them to create a single feature matrix
# of size NxD, where D is the total number of features
assert len(Xfeats) == len(all_labels)
X = scipy.sparse.vstack(Xfeats)
print X.shape
# train the classifier
self.cls.fit(X,y)
class CRFPerceptron(Tagger):
"""A Conditional Random Field version of the sequence tagger.
The underlying model uses features for the "emission" factors, but ignores
them for the transition. Thus, if the number of labels is L, number of features
is D, then the parameters for this model contain (in this order):
- start transition weights: size L
- end transition weights: size L
- intermediate transitions: size LxL
- emission feature weights: size LxD
The features are that used are the same ones as logistic regression, i.e. look
at feats.py/feat_gen.py for details.
The training for the CRF is based on structured perceptron. Please change the
parameters of the StructuredPerceptron below if needed (see struct_perceptron.py
for more details).
The MAP inference is based on Viterbi, currently unimplemented in viterbi.py.
If the viterbi_test.py passes succesfully, this tagger should train/tag correctly.
"""
def __init__(self, feats = Feats()):
self.feats = feats
self.le = preprocessing.LabelEncoder()
self.cls = struct_perceptron.StructuredPerceptron(self, max_iter=50, average=True, verbose=True)
def tag_sent(self, sent):
"""Calls viterbi code to find the best tags for a sentence."""
# Compute the features for the sentence
Xidxs = []
for i in xrange(len(sent)):
fidxs = self.feats.token2fidxs(sent, i)
Xidxs.append(fidxs)
# All the inference code
yhat = self.inference(Xidxs, self.cls.w)
# Convert the labels to string
return self.le.inverse_transform(yhat)
# These functions are specific to how weights are stored in CRFs
def get_start_trans_idx(self, y):
"""Get the weight index that represents S->y transition."""
# no offset here, these are at the beginning
assert y < self.num_classes
return y
def get_end_trans_idx(self, y):
"""Get the weight index that represents y->E transition."""
# offset only because the first L are for start trans
assert y < self.num_classes
offset = self.num_classes
return offset + y
def get_trans_idx(self, yp, yc):
"""Get the weight index that represents yp->yc transition."""
# offset only because the first 2xL are for start/end trans
L = self.num_classes
assert yp < L
assert yc < L
offset = 2*L
index = yp*L + yc
return offset + index
def get_ftr_idx(self, fidx, y):
"""Get the weight index that represents feat(fidx,y)."""
# offset because of transition weights, which are 2*L + L^2
L = self.num_classes
offset = 2*L + L*L
index = self.feats.num_features*y + fidx
return offset + index
def joint_feature(self, Xs, ys):
"""For a given sentence (represented as seq of feature indices) and
a tag sequence (represented by a seq of integers), compute the joint
feature vector.
"""
assert len(ys) == len(Xs)
fv = np.full((1, self.size_joint_feature), 0, dtype=np.int32)
# init_trans
fv[0,self.get_start_trans_idx(ys[0])] = 1
# final_trans
fv[0,self.get_end_trans_idx(ys[-1])] = 1
# intermediate transitions
for i in xrange(1, len(ys)):
tidx = self.get_trans_idx(ys[i-1], ys[i])
fv[0,tidx] = fv[0,tidx] + 1
# features
for i in xrange(len(ys)):
X = Xs[i]
y = ys[i]
for c in X:
fidx = self.get_ftr_idx(c, y)
fv[0,fidx] = fv[0,fidx] + 1
return fv #.tocsc()
def fit_data(self, sents, labels):
"""Train the tagger by calling the structured perceptron code."""
# get the set of all the labels
all_labels = []
for ls in labels:
for l in ls:
all_labels.append(l)
self.le.fit(all_labels)
# Get the sequence of gold label sequences, i.e. y in seq of seq of ints
y = []
for ls in labels:
y.append(self.le.transform(ls))
print "Classes:", len(self.le.classes_), self.le.classes_
# compute all the token features, store as seq of seq of feature indices
# i.e. each token has a list of feature indices
Xidxs = self.feats.index_data(sents)
assert len(Xidxs) == len(y)
print len(Xidxs), self.feats.num_features
# train
self.num_classes = len(self.le.classes_)
L = self.num_classes
self.size_joint_feature = 2*L + L*L + L*self.feats.num_features
print "Number of weights",self.size_joint_feature
print "Starting training"
# profiling code below, in case code is incredibly slow
# import cProfile, pstats, StringIO
# pr = cProfile.Profile()
# pr.enable()
self.cls.fit(Xidxs, y, False)
# pr.disable()
# s = StringIO.StringIO()
# sortby = 'cumulative'
# ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
# ps.print_stats()
# print s.getvalue()
def inference(self, X, w):
"""Run Viterbi inference.
This methods is a wrapper that converts the CRF weights into
different arrays of scores that represent transition and emission.
Then this method can call the general purpose Viterbi code in
viterbi.py to compute the best label sequence.
This function just returns the best sequence, y.
"""
L = self.num_classes
N = len(X)
start_scores = np.zeros(L)
end_scores = np.zeros(L)
trans_scores = np.zeros((L,L))
emission_scores = np.zeros((N,L))
# fill the above arrays for the weight vector
for j in xrange(L):
start_scores[j] = w[0,self.get_start_trans_idx(j)]
end_scores[j] = w[0,self.get_end_trans_idx(j)]
# transition
for k in xrange(L):
trans_scores[j][k] = w[0,self.get_trans_idx(j, k)]
# emission
for i in xrange(N):
score = 0.0
for fidx in X[i]:
score += w[0,self.get_ftr_idx(fidx, j)]
emission_scores[i][j] = score
# now run the viterbi code!
(score,yhat) = run_viterbi(emission_scores, trans_scores, start_scores, end_scores)
return yhat
def loss(self, yhat, y):
"""Tokenwise 0/1 loss, for printing and evaluating during training."""
tot = 0.0
for i in xrange(len(y)):
if yhat[i] != y[i]:
tot += 1.0
return tot
def max_loss(self, labels):
"""Maximum loss that a sentence that get, same as length tokenwise mismatch."""
return len(labels)