forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_custom_class_registrations.cpp
425 lines (375 loc) · 14 KB
/
test_custom_class_registrations.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#include <test/cpp/jit/test_custom_class_registrations.h>
#include <torch/custom_class.h>
#include <torch/script.h>
#include <iostream>
#include <string>
#include <vector>
using namespace torch::jit;
namespace {
struct DefaultArgs : torch::CustomClassHolder {
int x;
DefaultArgs(int64_t start = 3) : x(start) {}
int64_t increment(int64_t val = 1) {
x += val;
return x;
}
int64_t decrement(int64_t val = 1) {
x += val;
return x;
}
int64_t scale_add(int64_t add, int64_t scale = 1) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x = scale * x + add;
return x;
}
int64_t divide(c10::optional<int64_t> factor) {
if (factor) {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
x = x / *factor;
}
return x;
}
};
struct Foo : torch::CustomClassHolder {
int x, y;
Foo() : x(0), y(0) {}
Foo(int x_, int y_) : x(x_), y(y_) {}
int64_t info() {
return this->x * this->y;
}
int64_t add(int64_t z) {
return (x + y) * z;
}
void increment(int64_t z) {
this->x += z;
this->y += z;
}
int64_t combine(c10::intrusive_ptr<Foo> b) {
return this->info() + b->info();
}
};
struct _StaticMethod : torch::CustomClassHolder {
// NOLINTNEXTLINE(modernize-use-equals-default)
_StaticMethod() {}
static int64_t staticMethod(int64_t input) {
return 2 * input;
}
};
struct FooGetterSetter : torch::CustomClassHolder {
FooGetterSetter() : x(0), y(0) {}
FooGetterSetter(int64_t x_, int64_t y_) : x(x_), y(y_) {}
int64_t getX() {
// to make sure this is not just attribute lookup
return x + 2;
}
void setX(int64_t z) {
// to make sure this is not just attribute lookup
x = z + 2;
}
int64_t getY() {
// to make sure this is not just attribute lookup
return y + 4;
}
private:
int64_t x, y;
};
struct FooGetterSetterLambda : torch::CustomClassHolder {
int64_t x;
FooGetterSetterLambda() : x(0) {}
FooGetterSetterLambda(int64_t x_) : x(x_) {}
};
struct FooReadWrite : torch::CustomClassHolder {
int64_t x;
const int64_t y;
FooReadWrite() : x(0), y(0) {}
FooReadWrite(int64_t x_, int64_t y_) : x(x_), y(y_) {}
};
struct LambdaInit : torch::CustomClassHolder {
int x, y;
LambdaInit(int x_, int y_) : x(x_), y(y_) {}
int64_t diff() {
return this->x - this->y;
}
};
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct NoInit : torch::CustomClassHolder {
int64_t x;
};
struct PickleTester : torch::CustomClassHolder {
PickleTester(std::vector<int64_t> vals) : vals(std::move(vals)) {}
std::vector<int64_t> vals;
};
at::Tensor take_an_instance(const c10::intrusive_ptr<PickleTester>& instance) {
return torch::zeros({instance->vals.back(), 4});
}
struct ElementwiseInterpreter : torch::CustomClassHolder {
using InstructionType = std::tuple<
std::string /*op*/,
std::vector<std::string> /*inputs*/,
std::string /*output*/>;
// NOLINTNEXTLINE(modernize-use-equals-default)
ElementwiseInterpreter() {}
// Load a list of instructions into the interpreter. As specified above,
// instructions specify the operation (currently support "add" and "mul"),
// the names of the input values, and the name of the single output value
// from this instruction
void setInstructions(std::vector<InstructionType> instructions) {
instructions_ = std::move(instructions);
}
// Add a constant. The interpreter maintains a set of constants across
// calls. They are keyed by name, and constants can be referenced in
// Instructions by the name specified
void addConstant(const std::string& name, at::Tensor value) {
constants_.insert_or_assign(name, std::move(value));
}
// Set the string names for the positional inputs to the function this
// interpreter represents. When invoked, the interpreter will assign
// the positional inputs to the names in the corresponding position in
// input_names.
void setInputNames(std::vector<std::string> input_names) {
input_names_ = std::move(input_names);
}
// Specify the output name for the function this interpreter represents. This
// should match the "output" field of one of the instructions in the
// instruction list, typically the last instruction.
void setOutputName(std::string output_name) {
output_name_ = std::move(output_name);
}
// Invoke this interpreter. This takes a list of positional inputs and returns
// a single output. Currently, inputs and outputs must all be Tensors.
at::Tensor __call__(std::vector<at::Tensor> inputs) {
// Environment to hold local variables
std::unordered_map<std::string, at::Tensor> environment;
// Load inputs according to the specified names
if (inputs.size() != input_names_.size()) {
std::stringstream err;
err << "Expected " << input_names_.size() << " inputs, but got "
<< inputs.size() << "!";
throw std::runtime_error(err.str());
}
for (size_t i = 0; i < inputs.size(); ++i) {
environment[input_names_[i]] = inputs[i];
}
for (InstructionType& instr : instructions_) {
// Retrieve all input values for this op
std::vector<at::Tensor> inputs;
for (const auto& input_name : std::get<1>(instr)) {
// Operator output values shadow constants.
// Imagine all constants are defined in statements at the beginning
// of a function (a la K&R C). Any definition of an output value must
// necessarily come after constant definition in textual order. Thus,
// We look up values in the environment first then the constant table
// second to implement this shadowing behavior
if (environment.find(input_name) != environment.end()) {
inputs.push_back(environment.at(input_name));
} else if (constants_.find(input_name) != constants_.end()) {
inputs.push_back(constants_.at(input_name));
} else {
std::stringstream err;
err << "Instruction referenced unknown value " << input_name << "!";
throw std::runtime_error(err.str());
}
}
// Run the specified operation
at::Tensor result;
const auto& op = std::get<0>(instr);
if (op == "add") {
if (inputs.size() != 2) {
throw std::runtime_error("Unexpected number of inputs for add op!");
}
result = inputs[0] + inputs[1];
} else if (op == "mul") {
if (inputs.size() != 2) {
throw std::runtime_error("Unexpected number of inputs for mul op!");
}
result = inputs[0] * inputs[1];
} else {
std::stringstream err;
err << "Unknown operator " << op << "!";
throw std::runtime_error(err.str());
}
// Write back result into environment
const auto& output_name = std::get<2>(instr);
environment[output_name] = std::move(result);
}
if (!output_name_) {
throw std::runtime_error("Output name not specififed!");
}
return environment.at(*output_name_);
}
// Ser/De infrastructure. See
// https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html#defining-serialization-deserialization-methods-for-custom-c-classes
// for more info.
// This is the type we will use to marshall information on disk during
// ser/de. It is a simple tuple composed of primitive types and simple
// collection types like vector, optional, and dict.
using SerializationType = std::tuple<
std::vector<std::string> /*input_names_*/,
c10::optional<std::string> /*output_name_*/,
c10::Dict<std::string, at::Tensor> /*constants_*/,
std::vector<InstructionType> /*instructions_*/
>;
// This function yields the SerializationType instance for `this`.
SerializationType __getstate__() const {
return SerializationType{
input_names_, output_name_, constants_, instructions_};
}
// This function will create an instance of `ElementwiseInterpreter` given
// an instance of `SerializationType`.
static c10::intrusive_ptr<ElementwiseInterpreter> __setstate__(
SerializationType state) {
auto instance = c10::make_intrusive<ElementwiseInterpreter>();
std::tie(
instance->input_names_,
instance->output_name_,
instance->constants_,
instance->instructions_) = std::move(state);
return instance;
}
// Class members
std::vector<std::string> input_names_;
c10::optional<std::string> output_name_;
c10::Dict<std::string, at::Tensor> constants_;
std::vector<InstructionType> instructions_;
};
struct ReLUClass : public torch::CustomClassHolder {
at::Tensor run(const at::Tensor& t) {
return t.relu();
}
};
TORCH_LIBRARY(_TorchScriptTesting, m) {
m.class_<ReLUClass>("_ReLUClass")
.def(torch::init<>())
.def("run", &ReLUClass::run);
m.class_<_StaticMethod>("_StaticMethod")
.def(torch::init<>())
.def_static("staticMethod", &_StaticMethod::staticMethod);
m.class_<DefaultArgs>("_DefaultArgs")
.def(torch::init<int64_t>(), "", {torch::arg("start") = 3})
.def("increment", &DefaultArgs::increment, "", {torch::arg("val") = 1})
.def("decrement", &DefaultArgs::decrement, "", {torch::arg("val") = 1})
.def(
"scale_add",
&DefaultArgs::scale_add,
"",
{torch::arg("add"), torch::arg("scale") = 1})
.def(
"divide",
&DefaultArgs::divide,
"",
{torch::arg("factor") = torch::arg::none()});
m.class_<Foo>("_Foo")
.def(torch::init<int64_t, int64_t>())
// .def(torch::init<>())
.def("info", &Foo::info)
.def("increment", &Foo::increment)
.def("add", &Foo::add)
.def("combine", &Foo::combine);
m.class_<FooGetterSetter>("_FooGetterSetter")
.def(torch::init<int64_t, int64_t>())
.def_property("x", &FooGetterSetter::getX, &FooGetterSetter::setX)
.def_property("y", &FooGetterSetter::getY);
m.class_<FooGetterSetterLambda>("_FooGetterSetterLambda")
.def(torch::init<int64_t>())
.def_property(
"x",
[](const c10::intrusive_ptr<FooGetterSetterLambda>& self) {
return self->x;
},
[](const c10::intrusive_ptr<FooGetterSetterLambda>& self,
int64_t val) { self->x = val; });
m.class_<FooReadWrite>("_FooReadWrite")
.def(torch::init<int64_t, int64_t>())
.def_readwrite("x", &FooReadWrite::x)
.def_readonly("y", &FooReadWrite::y);
m.class_<LambdaInit>("_LambdaInit")
.def(torch::init([](int64_t x, int64_t y, bool swap) {
if (swap) {
return c10::make_intrusive<LambdaInit>(y, x);
} else {
return c10::make_intrusive<LambdaInit>(x, y);
}
}))
.def("diff", &LambdaInit::diff);
m.class_<NoInit>("_NoInit").def(
"get_x", [](const c10::intrusive_ptr<NoInit>& self) { return self->x; });
m.class_<MyStackClass<std::string>>("_StackString")
.def(torch::init<std::vector<std::string>>())
.def("push", &MyStackClass<std::string>::push)
.def("pop", &MyStackClass<std::string>::pop)
.def("clone", &MyStackClass<std::string>::clone)
.def("merge", &MyStackClass<std::string>::merge)
.def_pickle(
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
return self->stack_;
},
[](std::vector<std::string> state) { // __setstate__
return c10::make_intrusive<MyStackClass<std::string>>(
std::vector<std::string>{"i", "was", "deserialized"});
})
.def("return_a_tuple", &MyStackClass<std::string>::return_a_tuple)
.def(
"top",
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self)
-> std::string { return self->stack_.back(); })
.def(
"__str__",
[](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
std::stringstream ss;
ss << "[";
for (size_t i = 0; i < self->stack_.size(); ++i) {
ss << self->stack_[i];
if (i != self->stack_.size() - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
});
// clang-format off
// The following will fail with a static assert telling you you have to
// take an intrusive_ptr<MyStackClass> as the first argument.
// .def("foo", [](int64_t a) -> int64_t{ return 3;});
// clang-format on
m.class_<PickleTester>("_PickleTester")
.def(torch::init<std::vector<int64_t>>())
.def_pickle(
[](c10::intrusive_ptr<PickleTester> self) { // __getstate__
return std::vector<int64_t>{1, 3, 3, 7};
},
[](std::vector<int64_t> state) { // __setstate__
return c10::make_intrusive<PickleTester>(std::move(state));
})
.def(
"top",
[](const c10::intrusive_ptr<PickleTester>& self) {
return self->vals.back();
})
.def("pop", [](const c10::intrusive_ptr<PickleTester>& self) {
auto val = self->vals.back();
self->vals.pop_back();
return val;
});
m.def(
"take_an_instance(__torch__.torch.classes._TorchScriptTesting._PickleTester x) -> Tensor Y",
take_an_instance);
// test that schema inference is ok too
m.def("take_an_instance_inferred", take_an_instance);
m.class_<ElementwiseInterpreter>("_ElementwiseInterpreter")
.def(torch::init<>())
.def("set_instructions", &ElementwiseInterpreter::setInstructions)
.def("add_constant", &ElementwiseInterpreter::addConstant)
.def("set_input_names", &ElementwiseInterpreter::setInputNames)
.def("set_output_name", &ElementwiseInterpreter::setOutputName)
.def("__call__", &ElementwiseInterpreter::__call__)
.def_pickle(
/* __getstate__ */
[](const c10::intrusive_ptr<ElementwiseInterpreter>& self) {
return self->__getstate__();
},
/* __setstate__ */
[](ElementwiseInterpreter::SerializationType state) {
return ElementwiseInterpreter::__setstate__(std::move(state));
});
}
} // namespace