forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAveragePool3d.cpp
534 lines (480 loc) · 16.6 KB
/
AveragePool3d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/Pool.h>
#include <tuple>
namespace at {
namespace native {
namespace {
template <typename scalar_t>
static void avg_pool3d_out_frame(
scalar_t *input_p,
scalar_t *output_p,
int64_t nslices,
int64_t itime,
int64_t iwidth,
int64_t iheight,
int64_t otime,
int64_t owidth,
int64_t oheight,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int padT,
int padW,
int padH,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
at::parallel_for(0, nslices, 0, [&](int64_t start, int64_t end) {
for (auto k = start; k < end; k++)
{
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t i, j, ti;
/* local pointers. */
scalar_t *ip = input_p + k * itime * iwidth * iheight;
scalar_t *op = output_p + k * otime * owidth * oheight;
for (i = 0; i < otime * oheight * owidth; ++i)
*(op + i) = 0;
/* loop over output */
for (ti = 0; ti < otime; ti++)
{
for (i = 0; i < oheight; i++)
{
for (j = 0; j < owidth; j++)
{
/* compute pool range. */
int64_t tstart = ti * dT - padT;
int64_t hstart = i * dH - padH;
int64_t wstart = j * dW - padW;
int64_t tend = std::min(tstart + kT, itime + padT);
int64_t hend = std::min(hstart + kH, iheight + padH);
int64_t wend = std::min(wstart + kW, iwidth + padW);
int64_t pool_size = (tend - tstart) * (hend - hstart) * (wend - wstart);
tstart = std::max(tstart, (int64_t) 0);
hstart = std::max(hstart, (int64_t) 0);
wstart = std::max(wstart, (int64_t) 0);
tend = std::min(tend, itime);
hend = std::min(hend, iheight);
wend = std::min(wend, iwidth);
if (tstart >= tend || hstart >= hend || wstart >= wend) {
++op;
continue;
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
divide_factor = (tend - tstart) * (hend - hstart) * (wend - wstart);
}
}
/* compute local sum: */
scalar_t sum = 0.0;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t x, y, z;
for (z = tstart; z < tend; z++)
{
for (y = hstart; y < hend; y++)
{
for (x = wstart; x < wend; x++)
{
sum += *(ip + z * iwidth * iheight + y * iwidth + x);
}
}
}
/* set output to local max */
*op++ += sum / divide_factor;
}
}
}
}
});
}
void avg_pool3d_out_cpu_template(
Tensor& output,
const Tensor& input_,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 3,
"avg_pool3d: kernel_size must be a single int, or a tuple of three ints");
const int kT = safe_downcast<int, int64_t>(kernel_size[0]);
const int kH = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[1]);
const int kW = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[2]);
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 3,
"avg_pool3d: stride must be omitted, a single int, or a tuple of three ints");
const int dT = stride.empty() ? kT : safe_downcast<int, int64_t>(stride[0]);
const int dH = stride.empty() ? kH :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[1]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[2]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 3,
"avg_pool3d: padding must be a single int, or a tuple of three ints");
const int padT = safe_downcast<int, int64_t>(padding[0]);
const int padH = padding.size() == 1 ? padT : safe_downcast<int, int64_t>(padding[1]);
const int padW = padding.size() == 1 ? padT : safe_downcast<int, int64_t>(padding[2]);
TORCH_CHECK((input_.ndimension() == 4 || input_.ndimension() == 5),
"non-empty 4D or 5D (batch mode) tensor expected for input");
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0,
"divisor must be not zero");
const int64_t nslices = input_.size(-4);
const int64_t itime = input_.size(-3);
const int64_t iheight = input_.size(-2);
const int64_t iwidth = input_.size(-1);
const int64_t otime = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_mode);
const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ceil_mode);
const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil_mode);
pool3d_shape_check(
input_,
nslices,
kT, kH, kW,
dT, dH, dW,
padT, padH, padW,
1, 1, 1,
itime, iheight, iwidth,
otime, oheight, owidth,
/*check_input_size=*/ true);
/* get contiguous input */
Tensor input = input_.contiguous();
if (input.ndimension() == 4) /* non-batch mode */
{
/* resize output */
output.resize_({nslices, otime, oheight, owidth});
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Long, input.scalar_type(),
"avg_pool3d_out_frame",
[&] {
scalar_t *input_data = input.data_ptr<scalar_t>();
scalar_t *output_data = output.data_ptr<scalar_t>();
avg_pool3d_out_frame(
input_data, output_data, nslices,
itime, iwidth, iheight,
otime, owidth, oheight,
kT, kW, kH,
dT, dW, dH,
padT, padW, padH,
count_include_pad,
divisor_override);
});
}
else /* batch mode */
{
const int64_t nbatch = input.size(0);
const int64_t istride = nslices * itime * iwidth * iheight;
const int64_t ostride = nslices * otime * owidth * oheight;
/* resize output */
output.resize_({nbatch, nslices, otime, oheight, owidth});
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Long, input.scalar_type(),
"avg_pool3d_out_frame",
[&] {
scalar_t *input_data = input.data_ptr<scalar_t>();
scalar_t *output_data = output.data_ptr<scalar_t>();
at::parallel_for(0, nbatch, 0, [&](int64_t start, int64_t end) {
for (auto p = start; p < end; p++) {
avg_pool3d_out_frame(
input_data + p * istride, output_data + p * ostride, nslices,
itime, iwidth, iheight,
otime, owidth, oheight,
kT, kW, kH,
dT, dW, dH,
padT, padW, padH,
count_include_pad,
divisor_override
);
}
});
});
}
}
template <typename scalar_t>
static void avg_pool3d_backward_out_frame(
scalar_t *gradInput_p,
scalar_t *gradOutput_p,
int64_t nslices,
int64_t itime,
int64_t iwidth,
int64_t iheight,
int64_t otime,
int64_t owidth,
int64_t oheight,
int kT,
int kW,
int kH,
int dT,
int dW,
int dH,
int padT,
int padW,
int padH,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
at::parallel_for(0, nslices, 0, [&](int64_t start, int64_t end) {
for (auto k = start; k < end; k++)
{
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t i, j, ti;
/* local pointers */
scalar_t *ip = gradInput_p + k * itime * iwidth * iheight;
scalar_t *op = gradOutput_p + k * otime * owidth * oheight;
for (i = 0; i < itime*iwidth*iheight; i++)
*(ip + i) = 0;
/* loop over output */
for (ti = 0; ti < otime; ti++)
{
for (i = 0; i < oheight; i++)
{
for (j = 0; j < owidth; j++)
{
int64_t tstart = ti * dT - padT;
int64_t hstart = i * dH - padH;
int64_t wstart = j * dW - padW;
int64_t tend = std::min(tstart + kT, itime + padT);
int64_t hend = std::min(hstart + kH, iheight + padH);
int64_t wend = std::min(wstart + kW, iwidth + padW);
int64_t pool_size = (tend -tstart) * (hend - hstart) * (wend - wstart);
tstart = std::max(tstart, (int64_t) 0);
hstart = std::max(hstart, (int64_t) 0);
wstart = std::max(wstart, (int64_t) 0);
tend = std::min(tend, itime);
hend = std::min(hend, iheight);
wend = std::min(wend, iwidth);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
divide_factor = (tend - tstart) * (hend - hstart) * (wend - wstart);
}
}
/* scatter gradients out to footprint: */
scalar_t val = *op++;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t x,y,z;
for (z = tstart; z < tend; z++)
{
for (y = hstart; y < hend; y++)
{
for (x = wstart; x < wend; x++)
{
*(ip + z * iheight * iwidth + y * iwidth + x) += val / divide_factor;
}
}
}
}
}
}
}
});
}
Tensor& avg_pool3d_backward_out_cpu_template(
Tensor& gradInput,
const Tensor& gradOutput_,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 3,
"avg_pool3d: kernel_size must be a single int, or a tuple of three ints");
const int kT = safe_downcast<int, int64_t>(kernel_size[0]);
const int kH = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[1]);
const int kW = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[2]);
TORCH_CHECK(stride.empty() || stride.size() == 1 || stride.size() == 3,
"avg_pool3d: stride must be omitted, a single int, or a tuple of three ints");
const int dT = stride.empty() ? kT : safe_downcast<int, int64_t>(stride[0]);
const int dH = stride.empty() ? kH :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[1]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[2]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 3,
"avg_pool3d: padding must be a single int, or a tuple of three ints");
const int padT = safe_downcast<int, int64_t>(padding[0]);
const int padH = padding.size() == 1 ? padT : safe_downcast<int, int64_t>(padding[1]);
const int padW = padding.size() == 1 ? padT : safe_downcast<int, int64_t>(padding[2]);
TORCH_CHECK((input.ndimension() == 4 || input.ndimension() == 5),
"non-empty 4D or 5D (batch mode) tensor expected for input");
TORCH_CHECK(!divisor_override.has_value() || divisor_override.value() != 0, "divisor must be not zero");
const int64_t nslices = input.size(-4);
const int64_t itime = input.size(-3);
const int64_t iheight = input.size(-2);
const int64_t iwidth = input.size(-1);
/* get contiguous gradOutput */
Tensor gradOutput = gradOutput_.contiguous();
const int64_t otime = gradOutput.size(-3);
const int64_t oheight = gradOutput.size(-2);
const int64_t owidth = gradOutput.size(-1);
/* XXX shape check behavior from TH */
const int64_t otime_for_shape_check = pooling_output_shape<int64_t>(itime, kT, padT, dT, 1, ceil_mode);
const int64_t oheight_for_shape_check = pooling_output_shape<int64_t>(iheight, kH, padH, dH, 1, ceil_mode);
const int64_t owidth_for_shape_check = pooling_output_shape<int64_t>(iwidth, kW, padW, dW, 1, ceil_mode);
avg_pool3d_backward_shape_check(
input,
gradOutput_,
nslices,
kT, kH, kW,
dT, dH, dW,
padT, padH, padW,
itime, iheight, iwidth,
otime_for_shape_check, oheight_for_shape_check, owidth_for_shape_check);
/* resize */
gradInput.resize_as_(input);
gradInput.zero_();
/* backprop */
if (input.ndimension() == 4) /* non-batch mode*/
{
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Long, input.scalar_type(),
"avg_pool3d_backward_out_frame",
[&] {
scalar_t *gradInput_data = gradInput.data_ptr<scalar_t>();
scalar_t *gradOutput_data = gradOutput.data_ptr<scalar_t>();
avg_pool3d_backward_out_frame(
gradInput_data, gradOutput_data,
nslices,
itime, iwidth, iheight,
otime, owidth, oheight,
kT, kW, kH,
dT, dW, dH,
padT, padW, padH,
count_include_pad,
divisor_override);
});
}
else /* batch mode */
{
const int64_t nbatch = input.size(0);
const int64_t istride = nslices * itime * iwidth * iheight;
const int64_t ostride = nslices * otime * owidth * oheight;
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Long, input.scalar_type(),
"avg_pool3d_backward_out_frame",
[&] {
scalar_t *gradInput_data = gradInput.data_ptr<scalar_t>();
scalar_t *gradOutput_data = gradOutput.data_ptr<scalar_t>();
at::parallel_for(0, nbatch, 0, [&](int64_t start, int64_t end) {
for (auto p = start; p < end; p++)
{
avg_pool3d_backward_out_frame(
gradInput_data + p * istride, gradOutput_data + p * ostride, nslices,
itime, iwidth, iheight,
otime, owidth, oheight,
kT, kW, kH,
dT, dW, dH,
padT, padW, padH,
count_include_pad,
divisor_override
);
}
});
});
}
return gradInput;
}
} // namespace
Tensor& avg_pool3d_out_cpu(const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override,
Tensor& output)
{
avg_pool3d_out_cpu_template(
output,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override);
return output;
}
Tensor avg_pool3d_cpu(
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
Tensor output = at::empty({0}, input.options());
avg_pool3d_out_cpu_template(
output,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override);
return output;
}
Tensor& avg_pool3d_backward_out_cpu(const Tensor& gradOutput_,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override,
Tensor& gradInput)
{
avg_pool3d_backward_out_cpu_template(
gradInput,
gradOutput_,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override);
return gradInput;
}
Tensor avg_pool3d_backward_cpu(
const Tensor& gradOutput_,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override)
{
auto gradInput = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
avg_pool3d_backward_out_cpu_template(
gradInput,
gradOutput_,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override);
return gradInput;
}
} // at::native
} // at