-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsampler.py
38 lines (32 loc) · 1.33 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import numpy as np
class SimpleSampler:
def __init__(self, total, batch):
self.total = total
self.batch = batch
self.curr = total
self.ids = None
def nextids(self):
self.curr+=self.batch
if self.curr + self.batch > self.total:
self.ids = torch.LongTensor(np.random.permutation(self.total))
self.curr = 0
return self.ids[self.curr:self.curr+self.batch]
class ThetaImportanceSampler:
def __init__(self, theta_importance_lambda, img_len, img_wh, batch, roi):
self.img_len = img_len
self.batch = batch
W, H = img_wh
self.W = int(W * (roi[3] - roi[2]))
self.H = int(H * (roi[1] - roi[0]))
self.weight = self.get_weight(theta_importance_lambda, H, roi)
def get_weight(self, theta_importance_lambda, h, roi):
theta = -(np.arange(h)[int(h*roi[0]):int(h*roi[1])] - h//2) / h * np.pi
weight = np.cos(theta) * theta_importance_lambda + 1
weight /= np.sum(weight)
return weight
def nextids(self):
img_id = np.random.choice(self.img_len, self.batch)
random_width = np.random.choice(self.W, self.batch)
random_height = np.random.choice(self.H, self.batch, p=self.weight)
return img_id * self.W * self.H + (random_width + random_height * self.W)