-
Notifications
You must be signed in to change notification settings - Fork 2
/
solutions.py
1520 lines (1303 loc) · 54.3 KB
/
solutions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# %%
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from jaxtyping import Float, Bool
from torch import Tensor
import random
import matplotlib.pyplot as plt
# %%
# Some nice preliminary functions for testing.
def assert_with_expect(expected, actual):
assert expected == actual, f"Expected: {expected} Actual: {actual}"
def assert_list_of_floats_within_epsilon(
expected: list[float],
actual: list[float],
eps=0.0001,
):
if len(expected) != len(actual):
raise AssertionError(f"Expected: {expected} Actual: {actual}")
is_within_eps = True
for e, a in zip(expected, actual):
is_within_eps = is_within_eps and abs(e - a) < eps
if not is_within_eps:
raise AssertionError(f"Expected: {expected} Actual: {actual}")
def assert_tensors_within_epsilon(
expected: torch.Tensor,
actual: torch.Tensor,
eps=0.001,
):
if expected.shape != actual.shape:
raise AssertionError(f"Shapes of tensors do not match! Expected: {expected.shape} Acutal: {actual.shape}")
differences_within_epsilon = abs(expected - actual) < eps
if not differences_within_epsilon.all():
raise AssertionError(f"Values of tensors do not match! Expected: {expected} Actual: {actual}")
# %%
# As a quick note, I would weakly advise turning off AI support when going
# through these exercises. A lot of the learning process comes through
# hands-on-keyboard time. Once you've understand the fundamentals, then you can
# turn AI back on and get a lot more out of it.
# Let's begin by making sure our results are reproducible and deterministic
torch.manual_seed(100)
random.seed(100)
# Make sure you also download the following files beforehand to the directory where you are running this script from:
# + The maze training set. You could in theory generate this training set
# yourself from the code we provide here. However, that takes quite a long time,
# so in the interest of time, we provide a Python pickle containing 500,000
# training events for the agent to train on
# https://drive.google.com/file/d/1oyecHzwWVgYX2unTsV45kfltE7Jg85sg/view?usp=sharing
# + The initial parameters for one copy of our neural net. The phenomenon we're
# about to show is very sensitive to initial parameters. As such, to minimize
# any problems and maximize reproducibility, we've included an initial set of
# weights with which to start training
# https://drive.google.com/file/d/1P_Ke-XEnnr_gSdSjjm7SHhROeepgu-ww/view?usp=sharing
# + The initial parameters for another copy of our neural net. We'll briefly
# explain later why we need two copies of our neural net, but otherwise the
# reasoning for why we're providing initial parameters remains the same.
# https://drive.google.com/file/d/1OybDPtnMA7wI5V0MS5SQG3GnMOCj03jB/view?usp=sharing
# If you are doing this from Google Colab, it will probably be easiest to use
# your local web browser to download the files first and then reupload to your
# Colab notebook. Or make sure that you run the colab_setup.sh script
# %%
# Check for existence of required files to be downloaded first
import os.path
if not os.path.isfile("replay_buffer.pickle"):
raise Exception("You don't appear to have the replay buffer pickle available! Make sure to download it.")
if not os.path.isfile("reinitialized_current_network_state_dict.pt"):
raise Exception("You don't appear to have the initial weights for the current network portion of our game agent available. Make sure to download it.")
if not os.path.isfile("reinitialized_target_network_state_dict.pt"):
raise Exception("You don't appear to have the initial weights for the target network portion of our game agent available. Make sure to download it.")
# %%
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# So the game the agent is going to learn is maze navigation with item
# collection along the way. The agent can either harvest crops or harvest
# humans. As we shall we see, we mildly incentivize the agent to harvest crops,
# heavily incentivize the agent to find the exit, and heavily penalize the agent
# for harvesting a human. An agent harvests an item simply by moving onto the
# square where the item resides. Once harvested, the item disappears.
#
# To make training easier and so that it doesn't take too long on people's
# computers, we've simplified the setup of the game.
#
# + The maze is always a 7x7 grid
# + We always start in the upper-left-hand corner and the exit for the maze
# is always in the lower-right-hand corner.
# + There will always be a path from the start of the maze to the finish
# + The path from the start of the maze to the finish of the maze will never be
# obstructed by a crop or a human. That is it will always be possible to finish
# the maze without harvesting anything.
# + The maze will never have any "caverns" but will only have "paths," that is
# the maze will never have an empty 2x2 square of space. Every 2x2 square will
# have at least one wall.
#
# With that out of the way, let's go ahead and define the constants we'll be using
#
# We will be using DQN (i.e. Deep Q-Networks, i.e. Deep Q-Learning) to train our
# agent, which is the same idea as the tabular Q-learning we saw earlier, just
# that instead of updating a table to make the two sides of Bellman's equation
# balance, we're going to turn the difference between the sides into a loss that
# we're going to try to minimize with gradient descent.
MAZE_WIDTH = 7
MAZE_FINISH = -1
MAZE_WALL = 0
MAZE_EMPTY_SPACE = 1
HARVESTABLE_CROP = 2
HUMAN = 3
MOVE_UP_IDX = 0
MOVE_DOWN_IDX = 1
MOVE_LEFT_IDX = 2
MOVE_RIGHT_IDX = 3
MOVES = {
(-1, 0): torch.tensor(MOVE_UP_IDX).to(device), # up
(1, 0): torch.tensor(MOVE_DOWN_IDX).to(device), # down
(0, -1): torch.tensor(MOVE_LEFT_IDX).to(device), # left
(0, 1): torch.tensor(MOVE_RIGHT_IDX).to(device), # right
}
NUM_OF_MOVES = len(MOVES)
# %%
# We won't ask you to implement this, but it is good to understand what's going
# on here when we generate mazes. In particular, it's important to think about
# why we are carving out paths through the maze two squares at a time, and how
# that relates to our dessire to make sure there are no "caverns" in the maze.
def carve_path_in_maze(maze, starting_point):
moves = list(MOVES.keys())
starting_x, starting_y = starting_point
maze[starting_x, starting_y] = MAZE_EMPTY_SPACE
while True:
candidate_spaces_to_carve = []
for move in moves:
dx, dy = move
# We jump two moves ahead because otherwise you can end up creating
# "caverns" instead of only creating "paths"
# E.g. we might end up with something that looks like
# _____
# @@@__
# ____@
# ____@
# _____
#
# Instead of our desired (notice how we don't have a 4x4 gigantic
# empty space)
# _____
# @@@__
# ____@
# _@@@@
# _____
next_x = starting_x + dx
next_y = starting_y + dy
next_next_x = next_x + dx
next_next_y = next_y + dy
if 0 <= next_next_x < MAZE_WIDTH and \
0 <= next_next_y < MAZE_WIDTH and \
maze[next_next_x, next_next_y] == 0 and \
maze[next_x, next_y] == 0:
candidate_spaces_to_carve.append((next_x, next_y, next_next_x, next_next_y))
if not candidate_spaces_to_carve:
break
space_to_carve = random.choice(candidate_spaces_to_carve)
next_x, next_y, next_next_x, next_next_y = space_to_carve
maze[next_x, next_y], maze[next_next_x, next_next_y] = MAZE_EMPTY_SPACE, MAZE_EMPTY_SPACE
carve_path_in_maze(maze, (next_next_x, next_next_y))
def add_exit(maze: Float[Tensor, "maze_width maze_width"]):
choices = (maze == MAZE_EMPTY_SPACE).nonzero().tolist()
furthest = max(choices, key=lambda x: x[0] + x[1])
maze[furthest[0], furthest[1]] = MAZE_FINISH
# %%
# By adding items to crannies in the maze in a separate step, we can ensure that
# an item never obstructs the path to the exit.
def add_items_to_crannies_in_maze(maze: Float[Tensor, "maze_width maze_width"]):
all_empty_spaces = (maze == MAZE_EMPTY_SPACE).nonzero().tolist()
moves = list(MOVES.keys())
for (x, y) in all_empty_spaces:
if (x, y) == (0, 0):
continue
num_of_walls = 0
for move in moves:
dx, dy = move
nx, ny = x + dx, y + dy
if nx < 0 or nx >= MAZE_WIDTH or ny < 0 or ny >= MAZE_WIDTH or maze[nx, ny] == MAZE_WALL:
num_of_walls += 1
if num_of_walls == 3:
maze[x, y] = random.choice((HARVESTABLE_CROP, HUMAN))
def make_maze(maze_width: int) -> Float[Tensor, "maze_width maze_width"]:
maze = torch.zeros((maze_width, maze_width)).to(device)
carve_path_in_maze(maze, (0, 0))
add_exit(maze)
add_items_to_crannies_in_maze(maze)
return maze
# %%
# Getting all empty spaces in a maze will be important when we generate training
# examples for our agent to train on, since they let us insert the agent into
# arbitrary places in the maze
def get_all_empty_spaces(maze: Float[Tensor, "maze_width maze_width"]) -> list[tuple[int, int]]:
# TODO: Implement this
return [tuple(item) for item in (maze == MAZE_EMPTY_SPACE).nonzero().tolist()]
test_maze_empty_spaces = torch.tensor([
[ 1., 0., 2., 1., 1., 1., 1.],
[ 1., 0., 0., 0., 1., 0., 1.],
[ 1., 1., 1., 0., 1., 0., 1.],
[ 0., 0., 1., 0., 1., 0., 1.],
[ 3., 0., 1., 0., 2., 0., 1.],
[ 1., 0., 1., 0., 0., 0., 1.],
[ 1., 1., 1., 1., 1., 1., -1.]])
expected_empty_spaces = \
[
(0, 0),
(0, 3),
(0, 4),
(0, 5),
(0, 6),
(1, 0),
(1, 4),
(1, 6),
(2, 0),
(2, 1),
(2, 2),
(2, 4),
(2, 6),
(3, 2),
(3, 4),
(3, 6),
(4, 2),
(4, 6),
(5, 0),
(5, 2),
(5, 6),
(6, 0),
(6, 1),
(6, 2),
(6, 3),
(6, 4),
(6, 5),
]
assert_with_expect(
expected=set(expected_empty_spaces),
actual=set(get_all_empty_spaces(test_maze_empty_spaces))
)
# %%
# Let's also come up with a nice way of visualizing our mazes so we don't have
# to just stare at numbers
some_maze = make_maze(MAZE_WIDTH)
def string_repr_of_item(item):
if item == MAZE_WALL:
return ''
elif item == MAZE_EMPTY_SPACE:
return ''
elif item == HARVESTABLE_CROP:
return 'C'
elif item == HUMAN:
return 'H'
else:
return '?'
def plot_maze(maze, label_items_with_letters = True):
# Visualization requires going to CPU
maze = maze.cpu()
maze_width = len(maze[0])
_, ax = plt.subplots()
ax.imshow(-maze, 'Greys')
plt.imshow(-maze, 'Greys')
if label_items_with_letters:
for (x, y) in [(x, y) for x in range(0, maze_width) for y in range(0, maze_width)]:
ax.text(y - 0.3, x + 0.3, string_repr_of_item(maze[x, y].item()))
plt.xticks([], [])
plt.yticks([], [])
plt.show()
plot_maze(some_maze)
# %%
# Now comes the heart of reinforcement learning, the reward function!
#
# We've filled in the reward values for you already, but you should double-check
# that these make sense to you. One thing to note is that the penalty for
# harvesting a human is the biggest penalty there is, even eclipsing the reward
# you get from exiting the maze in magnitude.
HIT_WALL_PENALTY = -5
MOVE_PENALTY = -0.25
WIN_REWARD = 10
HARVEST_CROP_REWARD = 2
HARVEST_HUMAN_PENALTY = -11
# For training efficiency, we'll generate an entire 2-d tensor's worth of
# rewards showing the reward associated with moving to every possible square in
# the maze. This ends up being much faster when training instead of individually
# generating rewards per move because of vectorization by PyTorch.
def create_reward_tensor_from_maze(maze: Float[Tensor, "maze_width maze_Width"]) -> Float[Tensor, "maze_width maze_width"]:
rewards = torch.zeros_like(maze)
# TODO: Finish implementing this
rewards[maze == MAZE_WALL] = HIT_WALL_PENALTY
rewards[maze == MAZE_EMPTY_SPACE] = MOVE_PENALTY
rewards[maze == HARVESTABLE_CROP] = HARVEST_CROP_REWARD
rewards[maze == HUMAN] = HARVEST_HUMAN_PENALTY
rewards[maze == MAZE_FINISH] = WIN_REWARD
return rewards
test_maze_for_reward_tensor = torch.tensor(
[
[ 1., 0., 1., 1., 1., 1., 1.],
[ 1., 0., 1., 0., 0., 0., 1.],
[ 1., 1., 1., 0., 2., 0., 1.],
[ 0., 0., 0., 0., 1., 0., 1.],
[ 1., 1., 1., 0., 1., 1., 1.],
[ 1., 0., 1., 0., 1., 0., 0.],
[ 3., 0., 1., 1., 1., 1., -1.],
]
)
expected_reward_tensor = torch.tensor([[ -0.2500, -5.0000, -0.2500, -0.2500, -0.2500, -0.2500, -0.2500],
[ -0.2500, -5.0000, -0.2500, -5.0000, -5.0000, -5.0000, -0.2500],
[ -0.2500, -0.2500, -0.2500, -5.0000, 2.0000, -5.0000, -0.2500],
[ -5.0000, -5.0000, -5.0000, -5.0000, -0.2500, -5.0000, -0.2500],
[ -0.2500, -0.2500, -0.2500, -5.0000, -0.2500, -0.2500, -0.2500],
[ -0.2500, -5.0000, -0.2500, -5.0000, -0.2500, -5.0000, -5.0000],
[-11.0000, -5.0000, -0.2500, -0.2500, -0.2500, -0.2500, 10.0000]])
assert_tensors_within_epsilon(expected=expected_reward_tensor, actual=create_reward_tensor_from_maze(test_maze_for_reward_tensor))
# %%
# Here are some more helper functions. They aren't particularly enlighening to
# implement, so just read them.
def lookup_reward(rewards: Float[Tensor, "maze_width maze_width"], pos: tuple[int, int]):
x, y = pos
a, b = rewards.shape
if 0 <= x < a and 0 <= y < b:
return rewards[x, y]
else:
# You were out of bounds
return HIT_WALL_PENALTY
def make_maze_and_rewards():
maze = make_maze(MAZE_WIDTH)
rewards = create_reward_tensor_from_maze(maze)
return maze, rewards
# %%
# This next function actually implements gameplay. It's a bit finnicky and we're
# not here to solve mazes per se, but rather to understand the bits and bobs of
# RL, so we'll implement this for you. Just read this to make sure you
# understand what's going on.
#
# The one thing to note is that when implementing gameplay, we make a note of
# when a game has ended, i.e. has entered a terminal state, as this is important
# when calculating Bellman's equation (it means the max_a Q(s, a) term goes to
# zero on the right-hand side of the equation).
def get_next_pos(
old_maze: Float[Tensor, "maze_width maze_Width"],
rewards: Float[Tensor, "maze_with maze_width"],
position: tuple[int, int],
move: tuple[int, int],
) -> tuple:
x, y = position
a, b = old_maze.shape
i, j = move
new_maze = old_maze
if 0 <= x + i < a and 0 <= y + j < b:
new_pos = (x + i, y + j)
reward = lookup_reward(rewards, new_pos)
# Harvesting a crop (or a human!) consumes the tile and we get back an empty tile
if old_maze[new_pos] == HARVESTABLE_CROP or old_maze[new_pos] == HUMAN:
new_maze = torch.clone(old_maze)
new_maze[new_pos] = MAZE_EMPTY_SPACE
elif old_maze[new_pos] == MAZE_WALL:
# Reset position if we hit a wall
# Don't need to do reward since we already took care of that previously
new_pos = (x, y)
else:
# We were out of bounds so we don't move from our original spot
new_pos = (x, y)
# We were out of bounds so our reward is the same as hitting a wall
reward = HIT_WALL_PENALTY
is_terminal = old_maze[new_pos] == MAZE_FINISH
return new_maze, new_pos, reward, is_terminal
# %%
# Note that ultimately our neural net will take one-dimensional inputs, since
# we'll be multiplying them by matrices. Therefore we must squish our
# representation of the maze state, including agent and item positions, down
# into a single 1-d vector of size INPUT_SIZE.
#
# We don't want to bias the neural net into thinking e.g. that a wall is more
# similar to an empty space than it is to a human (because a wall is 0, an empty
# space 1, and a human is 3). So we'll want some sort of one-hot encoding. The strategy we'll use is to keep three separate copies of maze spaces around
#
# So e.g. if the agent was at position (1, 0) at the 3x3 maze (we'll use a smaller maze to make this more compact)
#
# [
# [ 1, 0, 2],
# [ 1, 0, 1],
# [ 1, 1, -1],
# ]
#
# (note that we use the first element of position as the row and the second
# element as the column, so e.g. (1, 0) is the second row, first column)
#
# this would be encoded as single 33 element 1-d vector consisting of
#
# 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
# ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
# Row 0 Row 1 Row 2 Row 0 Row 1 Row 2 Row 0 Row 1 Row 2 row coord col coord
#
# Positions of walls Position of crops Position of humans Agent position
#
# This means tht the size of the input to the neural net, namely INPUT_SIZE,
# consists of three copies of the maze, one for the base maze itself
# and its walls, one for an overlay of crop locations, and one for an overlay of
# human locations. We then include two one-hot encoded vectors of the current x
# position and the current y position of the agent
INPUT_SIZE = 3 * MAZE_WIDTH * MAZE_WIDTH + 2 * MAZE_WIDTH
def one_hot_encode_position(pos):
return F.one_hot(torch.tensor(pos).to(device), num_classes=MAZE_WIDTH).view(-1)
def reshape_maze_and_position_to_input(
maze: Float[Tensor, "maze_width maze_width"],
pos: tuple[int, int],
) -> Float[Tensor, "input_size"]:
# TODO: Implement this. You should use one_hot_encode_position somewhere
# This should take in a maze that is a 2-d tensor and a position tuple and
# output a 1-d tensor of size INPUT_SIZE
wall_locations = maze == MAZE_WALL
crop_locations = maze == HARVESTABLE_CROP
human_locations = maze == HUMAN
return torch.cat((
wall_locations.to(device).view(-1),
crop_locations.to(device).view(-1),
human_locations.to(device).view(-1),
one_hot_encode_position(pos),
)).float()
test_maze = torch.tensor(
[
[ 1., 0., 1., 1., 1., 1., 1.],
[ 1., 0., 1., 0., 0., 0., 1.],
[ 1., 1., 1., 0., 2., 0., 1.],
[ 0., 0., 0., 0., 1., 0., 1.],
[ 1., 1., 1., 0., 1., 1., 1.],
[ 1., 0., 1., 0., 1., 0., 0.],
[ 3., 0., 1., 1., 1., 1., -1.],
]
).to(device)
test_position = (2, 1)
expected_1d_tensor = torch.tensor([0., 1., 0., 0., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 0., 1.,
0., 1., 0., 1., 1., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]).to(device)
assert_tensors_within_epsilon(expected=expected_1d_tensor, actual=reshape_maze_and_position_to_input(test_maze, test_position))
# %%
# Print it out to see what kind of tensor the neural net actually sees
reshape_maze_and_position_to_input(test_maze, test_position)
# %%
# Now we'll implement a replay buffer that holds examples of maze games for the
# agent to learn from.
#
# One of the nice benefits of using Q-learning vs other kinds of reinforcement
# learning algorithms is that Q-learning allows an agent to learn from any
# position of any game. That means that we can generate all our games up-front
# and then train our agent on them all in bulk. Note that in many scenarios, RL
# practicioners will still generate games while training the agent rather than
# first generating all the games and then training. This is ofen the case when
# we don't know how to generate a game and the only way to generate a game is to
# have the agent play (this happens a lot with RL in the physical world, where
# you can not magically conjure up new scenarios and must have the agent go out
# into the real world, perform real actions, and record those to learn from
# them).
#
# In our case we're lucky to have an algorithm that can enumerate mazes for us so we don't need to rely on our agent to generate
#
# Other forms of RL sometimes require that the games being used for training
# were games generated by the current policy of the agent.
@dataclass
class ReplayBuffer:
states: Float[Tensor, "buffer input_size"]
actions: Float[Tensor, "buffer moves"]
rewards: Float[Tensor, "buffer"]
is_terminals: Bool[Tensor, "buffer"]
next_states: Float[Tensor, "buffer input_size"]
def shuffle(self):
"""
Shuffling the various state-action+consequence tuples.
"""
# We assume that all the tensors share the same buffer size, so we just
# grab the buffer size from states
permutation = torch.randperm(self.states.size()[0])
self.states = self.states[permutation]
self.actions = self.actions[permutation]
self.rewards = self.rewards[permutation]
self.is_terminals = self.is_terminals[permutation]
self.next_states = self.next_states[permutation]
def to(self, device):
return ReplayBuffer(
self.states.to(device),
self.actions.to(device),
self.rewards.to(device),
self.is_terminals.to(device),
self.next_states.to(device),
)
def create_replay_buffer(replay_buffer_size: int) -> ReplayBuffer:
states_buffer = torch.zeros((replay_buffer_size, INPUT_SIZE)).to(device)
actions_buffer = torch.zeros((replay_buffer_size, NUM_OF_MOVES)).to(device)
rewards_buffer = torch.zeros((replay_buffer_size)).to(device)
is_terminals_buffer = torch.zeros((replay_buffer_size), dtype=torch.bool).to(device)
next_states_buffer = torch.zeros((replay_buffer_size, INPUT_SIZE)).to(device)
i = 0
exceeded_buffer_size = False
while not exceeded_buffer_size:
old_maze, rewards = make_maze_and_rewards()
for pos in get_all_empty_spaces(old_maze):
if exceeded_buffer_size:
break
for mm in list(MOVES.keys()):
if i >= replay_buffer_size:
exceeded_buffer_size = True
break
move = mm
new_maze, new_pos, reward, is_terminal = get_next_pos(old_maze, rewards, pos, move)
states_buffer[i] = reshape_maze_and_position_to_input(old_maze, pos)
actions_buffer[i] = F.one_hot(MOVES[move], num_classes=NUM_OF_MOVES).to(device)
rewards_buffer[i] = reward
is_terminals_buffer[i] = is_terminal
next_states_buffer[i] = reshape_maze_and_position_to_input(new_maze, new_pos)
i += 1
return ReplayBuffer(states_buffer, actions_buffer, rewards_buffer, is_terminals_buffer, next_states_buffer)
# %%
create_replay_buffer(5)
# %%
# Hyperparameters
# INPUT_SIZE consists of three copies of the maze, one for the base maze itself
# and its walls, one for an overlay of crop locations, and one for an overlay of
# human locations. We then include two one-hot encoded vectors of the current x
# position and the current y position of the agent
INPUT_SIZE = 3 * MAZE_WIDTH * MAZE_WIDTH + 2 * MAZE_WIDTH
MAX_TRAINING_SET_SIZE = 500_000
GAMMA_DECAY = 0.95
HIDDEN_SIZE = 6 * INPUT_SIZE
# If you have a CUDA-enabled GPU you can crank this number up to e.g. 10. If
# you're on a CPU, I would recommend leaving this at 2 for the sake of speed.
NUM_OF_EPOCHS = 2
BATCH_SIZE = 5_000
# If you have a CUDA-enabled GPU you can crank this number up to e.g. 10. If
# you're on a CPU, I would recommend leaving this at 1 for the sake of speed.
NUMBER_OF_TIMES_TO_RESHUFFLE_TRAINING_SET = 1
LEARNING_RATE = 1e-3
NUM_OF_MOVES = 4
NUM_OF_STEPS_BEFORE_TARGET_UPDATE = 10
STOP_TRAINING_AT_THIS_LOSS = 0.3
# %%
# The heart of our agent, the neural net that powers it all! Remember this
# neural net is meant to implement the Q function.
#
# For efficiency reasons, our neural net will not take in a state and action
# pair and output a single number, rather it will take in a state and output 4
# pairs of actions and Q-values associated with them.
#
# In other words the neural net implements the function:
#
# s -> (Q(s, down), Q(s, up), Q(s, left), Q(s, right))
#
# for some input state s.
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.linear_relu_stack = nn.Sequential(
nn.Linear(INPUT_SIZE, HIDDEN_SIZE),
nn.LeakyReLU(negative_slope=0.1),
nn.Linear(HIDDEN_SIZE, HIDDEN_SIZE),
nn.LeakyReLU(negative_slope=0.1),
nn.Linear(HIDDEN_SIZE, HIDDEN_SIZE),
nn.LeakyReLU(negative_slope=0.1),
nn.Linear(HIDDEN_SIZE, NUM_OF_MOVES),
)
def forward(self, x: Float[Tensor, "... input_size"]) -> Float[Tensor, "... 4"]:
q_values = self.linear_relu_stack(x)
return q_values
# %%
# Our game agent has two copies of the neural net.
#
# It turns out that for stability reasons, it is often more effective in DQN to
# have two neural nets, one that powers each side of Bellman's equation and then
# periodically sync the two nets together by copying the weights of one to the
# other.
#
# I won't get into the specifics of this in this exercise, but this is a
# well-known adaptation that you can find a lot of good online materials for.
#
# We'll call the network that powers the left-hand side of Bellman's equation
# the current network and the one that powers the right hand side the target
# network. The target network lags behind the current network. Periodically the
# current network copies its weights over to the target network.
class GameAgent:
def __init__(self, current_network: NeuralNetwork, target_network: NeuralNetwork):
self.current_network = current_network
self.target_network = target_network
# %%
# This is just some boilerplae code to be able to load previously generated data.
import pickle
import io
# From https://github.com/pytorch/pytorch/issues/16797#issuecomment-633423219
# Necessary to make sure we can unpickle things that may have come from a GPU to
# a CPU and vice versa
class CustomUnpickler(pickle.Unpickler):
def __init__(self, device, file):
super().__init__(file)
self.device = device
def find_class(self, module, name):
if module == 'torch.storage' and name == '_load_from_bytes':
return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
else: return super().find_class(module, name)
with open('replay_buffer.pickle', 'rb') as file:
preexisting_replay_buffer = CustomUnpickler(device, file).load()
# %%
# Now it's time to actually calculate Bellman's equation! Like almost anything
# else in ML, we're going to be caclculating these values as a batch, so you're
# going to be given an entire batch of rewards, next states, and boolean flags
# indicating whether the game terminated on that turn or not.
#
# Remember, the max_of_q_values should be set to 0 when the game has terminated.
def calculate_right_hand_of_bellmans_equation(
target_network: NeuralNetwork,
rewards: Float[Tensor, "batch"],
is_terminals: Bool[Tensor, "batch"],
next_states: Float[Tensor, "batch input_size"],
):
# We'll provide the beginning where you need to calculate the max over all
# possible actions from the next state
# Rembmer that the right-hand side of Bellman's equation looks like
#
# reward + gamma * max_of_q_values
with torch.no_grad():
max_target_q_values = target_network(next_states).max(dim=-1).values
# TODO: finish this implementation
max_target_q_values[is_terminals] = 0
target_q_values = rewards + GAMMA_DECAY * max_target_q_values
return target_q_values
toy_linear_neural_net = nn.Linear(
3,
3,
bias=False
)
with torch.no_grad():
toy_linear_neural_net.weight = nn.Parameter(
torch.tensor(
[
[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.],
[0., 0., 0.],
]
)
)
test_rewards = torch.tensor([1., -1., 0., 2., -2.])
test_is_terminals = torch.tensor([True, False, True, True, False])
test_next_states = torch.tensor([
[1., 0., 0.],
[0., 1., 0.],
[0., 1., 0.],
[1., 0., 1.],
[1., 1., 1.],
])
expected_result_of_bellman_right_hand = torch.tensor([ 1.0000, 6.6000, 0.0000, 2.0000, 20.8000])
assert_tensors_within_epsilon(
expected=expected_result_of_bellman_right_hand,
actual= calculate_right_hand_of_bellmans_equation(
toy_linear_neural_net,
test_rewards,
test_is_terminals,
test_next_states,
),
)
# %%
def calculate_left_hand_of_bellmans_equation(
current_network: NeuralNetwork,
states: Float[Tensor, "batch input_size"],
actions: Float[Tensor, "batch 4"],
) -> Float[Tensor, "batch 4"]:
# TODO: implement this
predictions = (current_network(states) * actions).sum(dim=-1)
return predictions
toy_linear_neural_net = nn.Linear(
3,
4,
bias=False
)
with torch.no_grad():
toy_linear_neural_net.weight = nn.Parameter(
torch.tensor(
[
[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.],
[1., 3., 5.],
]
)
)
test_states = torch.tensor([
[1., 0., 0.],
[0., 1., 0.],
[0., 1., 0.],
[1., 0., 1.],
[1., 1., 1.],
])
test_actions = torch.tensor([
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.],
[0., 0., 0., 1.],
])
expected_left_hand_side = torch.tensor([1., 5., 5., 4., 9.])
assert_tensors_within_epsilon(
expected=expected_left_hand_side,
actual= calculate_left_hand_of_bellmans_equation(
toy_linear_neural_net,
test_states,
test_actions,
),
)
# %%
# Now put it all together to create the loss function that forms the heart of
# Q-learning
# We'll use MSE loss between the left and right hand sides of Bellman's equation
def bellman_loss_function(
target_network: NeuralNetwork,
current_network: NeuralNetwork,
states: Float[Tensor, "batch input_size"],
actions: Float[Tensor, "batch 4"],
rewards: Float[Tensor, "batch"],
is_terminals: Bool[Tensor, "batch"],
next_states: Float[Tensor, "batch input_size"],
) -> Float[Tensor, ""]:
# TODO: Imnplement this
target_q_values = calculate_right_hand_of_bellmans_equation(
target_network,
rewards,
is_terminals,
next_states,
)
predictions = calculate_left_hand_of_bellmans_equation(
current_network,
states,
actions,
)
return F.mse_loss(predictions, target_q_values)
toy_linear_neural_net_current = nn.Linear(
3,
3,
bias=False
)
with torch.no_grad():
toy_linear_neural_net_current.weight = nn.Parameter(
torch.tensor(
[
[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.],
[0., 0., 0.],
]
)
)
test_rewards = torch.tensor([1., -1., 0., 2., -2.])
test_is_terminals = torch.tensor([True, False, True, True, False])
test_next_states = torch.tensor([
[1., 0., 0.],
[0., 1., 0.],
[0., 1., 0.],
[1., 0., 1.],
[1., 1., 1.],
])
toy_linear_neural_net_target = nn.Linear(
3,
4,
bias=False
)
with torch.no_grad():
toy_linear_neural_net_target.weight = nn.Parameter(
torch.tensor(
[
[9., 2., 3.],
[4., 5., 2.],
[7., 0., 1.],
[2., 3., 5.],
]
)
)
test_states = torch.tensor([
[1., 0., 0.],
[0., 1., 0.],
[0., 1., 0.],
[1., 0., 1.],
[1., 1., 1.],
])
test_actions = torch.tensor([
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.],
[0., 0., 0., 1.],
])
expected_bellman_loss = torch.tensor(31.6505)
assert_tensors_within_epsilon(
expected=expected_bellman_loss,
actual= bellman_loss_function(
toy_linear_neural_net_target,
toy_linear_neural_net_current,
test_states,
test_actions,
test_rewards,
test_is_terminals,
test_next_states,
),
)
# %%
# Now let's put it in a big training loop!
#
# There's enough fiddly parts here that we're implementing it for you, but read
# through this and make sure you understand what the loop is doing.
def train(game_agent: GameAgent, replay_buffer: ReplayBuffer):
replay_buffer = replay_buffer.to(device)
target_network = game_agent.target_network.to(device)
current_network = game_agent.current_network.to(device)
optimizer = torch.optim.SGD(current_network.parameters(), lr=LEARNING_RATE)
num_of_steps_since_target_update = 0
for _ in range(NUMBER_OF_TIMES_TO_RESHUFFLE_TRAINING_SET):
replay_buffer.shuffle()
for e in range(NUM_OF_EPOCHS):
print(f"Epoch {e}")
current_loss_in_epoch = None
initial_loss_in_epoch = None
for i in range(0, MAX_TRAINING_SET_SIZE, BATCH_SIZE):
states = replay_buffer.states[i:i+BATCH_SIZE]
actions = replay_buffer.actions[i:i+BATCH_SIZE]
rewards = replay_buffer.rewards[i:i+BATCH_SIZE]
is_terminals = replay_buffer.is_terminals[i:i+BATCH_SIZE]
next_states = replay_buffer.next_states[i:i+BATCH_SIZE]
loss = bellman_loss_function(
target_network,
current_network,
states,
actions,
rewards,
is_terminals,
next_states,
)
if initial_loss_in_epoch is None:
initial_loss_in_epoch = loss
current_loss_in_epoch = loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
if num_of_steps_since_target_update >= NUM_OF_STEPS_BEFORE_TARGET_UPDATE:
target_network.load_state_dict(current_network.state_dict())
num_of_steps_since_target_update = 0
num_of_steps_since_target_update += 1
print(f"Loss at beginning of epoch: {initial_loss_in_epoch}")
print(f"Loss at end of epoch: {current_loss_in_epoch}")
if current_loss_in_epoch < STOP_TRAINING_AT_THIS_LOSS:
return
# %%
game_agent = GameAgent(NeuralNetwork(), NeuralNetwork())
# This experiment is very sensitive to initial parameters, so we're going to fix
# the starting parameters we use
current_network_state_parameters = torch.load("reinitialized_current_network_state_dict.pt", map_location=device, weights_only=True)
target_network_state_parameters = torch.load("reinitialized_target_network_state_dict.pt", map_location=device, weights_only=True)
game_agent.current_network.load_state_dict(current_network_state_parameters)
game_agent.target_network.load_state_dict(target_network_state_parameters)
# %%
# This helper function will be very useful for visualizing the policy our agent
# has developed.
@torch.no_grad()
def plot_policy(model, maze):