forked from huggingface/pytorch-openai-transformer-lm
-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate.py
122 lines (104 loc) · 4.73 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
import os
import random
import numpy as np
import torch
import torch.nn as nn
from model_pytorch import LMModel, load_openai_pretrained_model
from text_utils import TextEncoder
def make_batch(X):
X = np.array(X)
assert X.ndim in [1, 2]
if X.ndim == 1:
X = np.expand_dims(X, axis=0)
pos_enc = np.arange(n_vocab + n_special, n_vocab + n_special + X.shape[-1])
pos_enc = np.expand_dims(pos_enc, axis=0)
batch = np.stack([X, pos_enc], axis=-1)
batch = torch.tensor(batch, dtype=torch.long).to(device)
return batch
def append_batch(X, next_idx):
next_pos = X[:, -1:, 1] + 1
next_x = torch.cat((next_idx, next_pos), -1).unsqueeze(1)
return torch.cat((X, next_x), 1)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--desc', type=str, help="Description")
parser.add_argument('--dataset', type=str)
parser.add_argument('--log_dir', type=str, default='log/')
parser.add_argument('--save_dir', type=str, default='save/')
parser.add_argument('--data_dir', type=str, default='data/')
parser.add_argument('--submission_dir', type=str, default='submission/')
parser.add_argument('--submit', action='store_true')
parser.add_argument('--analysis', action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--n_iter', type=int, default=3)
parser.add_argument('--n_batch', type=int, default=8)
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument('--lr', type=float, default=6.25e-5)
parser.add_argument('--lr_warmup', type=float, default=0.002)
parser.add_argument('--n_ctx', type=int, default=512)
parser.add_argument('--n_embd', type=int, default=768)
parser.add_argument('--n_head', type=int, default=12)
parser.add_argument('--n_layer', type=int, default=12)
parser.add_argument('--embd_pdrop', type=float, default=0.1)
parser.add_argument('--attn_pdrop', type=float, default=0.1)
parser.add_argument('--resid_pdrop', type=float, default=0.1)
parser.add_argument('--clf_pdrop', type=float, default=0.1)
parser.add_argument('--l2', type=float, default=0.01)
parser.add_argument('--vector_l2', action='store_true')
parser.add_argument('--opt', type=str, default='adam')
parser.add_argument('--afn', type=str, default='gelu')
parser.add_argument('--lr_schedule', type=str, default='warmup_linear')
parser.add_argument('--encoder_path', type=str, default='model/encoder_bpe_40000.json')
parser.add_argument('--bpe_path', type=str, default='model/vocab_40000.bpe')
parser.add_argument('--n_transfer', type=int, default=12)
parser.add_argument('--lm_coef', type=float, default=0.5)
parser.add_argument('--b1', type=float, default=0.9)
parser.add_argument('--b2', type=float, default=0.999)
parser.add_argument('--e', type=float, default=1e-8)
parser.add_argument('--n_valid', type=int, default=374)
parser.add_argument('--gen_len', type=int, default=20)
parser.add_argument('--topk', type=int, default=10)
args = parser.parse_args()
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Constants
submit = args.submit
dataset = args.dataset
n_ctx = args.n_ctx
save_dir = args.save_dir
desc = args.desc
data_dir = args.data_dir
log_dir = args.log_dir
submission_dir = args.submission_dir
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
print("device", device, "n_gpu", n_gpu)
text_encoder = TextEncoder(args.encoder_path, args.bpe_path)
encoder = text_encoder.encoder
n_vocab = len(text_encoder.encoder)
n_special = 0 # XD: useless for language modeling task
vocab = n_vocab + n_special + n_ctx
lm_model = LMModel(args, vocab, n_ctx, return_probs=True)
load_openai_pretrained_model(lm_model.transformer, n_ctx=n_ctx, n_special=n_special)
lm_model.to(device)
lm_model.eval()
text = input('Input some beginning words:')
while text != 'q':
X = text_encoder.encode([text,])
XMB = make_batch(X)
for _ in range(args.gen_len):
lm_probs = lm_model(XMB)
if args.topk == 0:
next_idx = torch.multinomial(lm_probs[:, -1, :], 1)
else:
values, indices = lm_probs[:, -1, :].topk(args.topk)
next_idx = indices.gather(-1, torch.multinomial(values, 1))
next_token = text_encoder.decoder[next_idx.item()].replace('</w>', '')
print(next_token, end=' ')
XMB = append_batch(XMB, next_idx)
print()
text = input('Input some beginning words:')