-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathm68_RND_LOOP.ino
253 lines (223 loc) · 8.31 KB
/
m68_RND_LOOP.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// --------------------------------------------------------------------------
// This file is part of the NOZORI firmware.
//
// NOZORI firmware is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// NOZORI firmware is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with NOZORI firmware. If not, see <http://www.gnu.org/licenses/>.
// --------------------------------------------------------------------------
// RND LOOP : random value to generate a slowly evolving LFO, or VCO
// Pot 1 : clock fq
// Pot 2 : Mod clock
// Pot 3 : nb step (1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 24, 32)
// Pot 4 : nb step modulation
// Pot 5 : mutate speed
// Pot 6 : mutation speed modulation
// CV 1 : clock syncro
// CV 2 : clock modulation value
// CV 3 : step modulation value
// CV 4 : Mutation speed modulation value
// IN 1 : change all step
// IN 2 : change next step
// Selecteur3 : interpolation : none / linear / bubic
// OUT 1 : OUT X
// OUT 2 : OUT Y
// LED 1 : out X
// LED 2 : out Y
inline void RND_LOOP_init_() {
uint32_t i;
for (i=0; i<32; i++) { thomas[0][i] = random32(); }
for (i=0; i<32; i++) { thomas[1][i] = random32(); }
for (i=0; i<32; i++) { thomas[2][i] = random32(); }
// current_interpol_valueX = ; ...
rnd_all_save = 0;
init_chaos();
}
inline void RND_LOOP_loop_() {
int32_t tmpS, CV3_value, CV4_value;
uint32_t i, tmp, toggle;
int32_t chaosX, chaosY, chaosZ;
int32_t chaosdX, chaosdY, chaosdZ;
uint32_t variation_speed;
int32_t pot3_tmp, pot5_tmp;
int32_t freq;
filter16_nozori_68
test_connect_loop_68();
toggle = get_toggle();
toggle_global = toggle;
chaos(16); // for default mod values
if (CV3_connect < 60) CV3_value = CV_filter16_out[index_filter_cv3] - CV3_0V; else CV3_value = chaos_dx>>16;
if (CV4_connect < 60) CV4_value = CV_filter16_out[index_filter_cv4] - CV4_0V; else CV4_value = chaos_dy>>16;
CV3_value = min(0x7FFF,max(-0x7FFF,CV3_value));
CV4_value = min(0x7FFF,max(-0x7FFF,CV4_value));
// CLOCK
if (CV1_connect < 60) { // syncro sur l'entree
freq = (CV_filter16_out[index_filter_pot1] + 4095) / 8192;
tmp = (CV_filter16_out[index_filter_pot2] + 5461)/10923; // from 0.5 to 6.5
clock_diviseur = tab_diviseur[freq] * tab_diviseur2[tmp];
clock_multiplieur = tab_multiplieur[freq] * tab_multiplieur2[tmp];
}
else { // pas de syncro, on calcul l'increment normallement
freq = (CV_filter16_out[index_filter_pot1])<<11;
freq += 0x01000000;
macro_FqMod_fine(pot2, CV2)
macro_fq2increment
LFO1_increment = increment1; //save
}
// STEP
pot3_tmp = CV_filter16_out[index_filter_pot3];
tmpS = CV3_value;
tmpS *= CV_filter16_out[index_filter_pot4];
tmpS >>= 16;
pot3_tmp += tmpS;
pot3_tmp = min(0xFFFF, max(0,pot3_tmp));
tmp = pot3_tmp / 5462;//(0x10000/12); // 12 possible step value
nb_step = possible_step[tmp];
// variation speed
pot5_tmp = CV_filter16_out[index_filter_pot5];
tmpS = CV4_value;
tmpS *= CV_filter16_out[index_filter_pot6];
tmpS >>= 16;
pot5_tmp += tmpS;
pot5_tmp = min(0xFFFF, max(0,pot5_tmp));
pot5_tmp *= pot5_tmp>>1;
variation_speed = pot5_tmp >>15;
// rnd all
if ( (IN1_connect < 60) && (rnd_all_save == 0) && (audio_inL>0xB0000000) ) {
rnd_all_save = 1;
for (i=0; i<32; i++) { thomas[0][i] = random32(); }
for (i=0; i<32; i++) { thomas[1][i] = random32(); }
for (i=0; i<32; i++) { thomas[2][i] = random32(); }
}
else if ((IN1_connect < 60) && (audio_inL < 0xA0000000)) {
rnd_all_save = 0;
}
if (reset1 == 1) { // fin d'un step, on calcul le deplacement d'une valeur : pas possible de le faire en audio car trop lent
loop_index = (loop_index+1) % nb_step;
if ((IN2_connect < 60) && (audio_inR > 0xB0000000)) { // rnd 1 step
thomas[0][loop_index] = random32();
thomas[1][loop_index] = random32();
thomas[2][loop_index] = random32();
}
chaosX = thomas[0][loop_index];
chaosY = thomas[1][loop_index];
chaosZ = thomas[2][loop_index];
chaosdX = fast_sin(chaosY)^0x80000000;
chaosdY = fast_sin(chaosZ)^0x80000000;
chaosdZ = fast_sin(chaosX)^0x80000000;
chaosdX >>= 16;
chaosdX *= variation_speed;
chaosdY >>= 16;
chaosdY *= variation_speed;
chaosdZ >>= 16;
chaosdZ *= variation_speed;
thomas[0][loop_index] += chaosdX>>2;
thomas[1][loop_index] += chaosdY>>2;
thomas[2][loop_index] += chaosdZ>>2;
reset1 = 0;
}
// LEDS
//tmp = (LFO1_phase & 0x03FFFFFF);
//led2(tmp>>17);
//tmp = (LFO1_phase / (nb_step+1));
//tmp = min(tmp, 0x03FFFFFF);
//led3(tmp>>17);
led2(audio_outL>>23);
led4(audio_outR>>23);
}
inline void RND_LOOP_audio_() {
uint32_t current_tick, increment1;
uint32_t current_step, tmp,tmp2, outX, outY, toggle;
int32_t tmpS, outSX, outSY;
nb_tick = min(0x0FFFFFFF, nb_tick+1); // to prevent overflow with multiplier
if( (last_clock_ == 0) && (CV1_connect < 60) && (CV_filter16_out[index_filter_cv1] > 0xB000) ) { // mode syncro, on a une syncro
last_clock_ = 1;
increment1 = 0xFFFFFFFF / nb_tick;
increment1 /= clock_diviseur;
increment1 *= clock_multiplieur;
LFO1_increment = increment1>>6;
nb_tick = 0;
}
else if ((CV1_connect < 60) && (CV_filter16_out[index_filter_CV1] < 0xA000) ) {
last_clock_ = 0;
}
LFO1_phase += LFO1_increment;
toggle = toggle_global;
// step
current_step = LFO1_phase >> 26; // 6 bit for step value
if ( current_step != last_step) {
current_step = current_step % nb_step;
LFO1_phase = (current_step << 26) + (LFO1_phase & 0x03FFFFFF);
reset1 = 1; // pour calculer la prochaine valeur
previous_interpol_valueX = last_interpol_valueX;
previous_interpol_valueY = last_interpol_valueY;
last_interpol_valueX = current_interpol_valueX;
last_interpol_valueY = current_interpol_valueY;
if ( toggle < 2) { // actualise juste la valeur acuel
current_interpol_valueX = abs((int32_t)thomas[0][current_step]);
current_interpol_valueY = abs((int32_t)thomas[1][current_step]);
}
else { // on a besion d'une valeur suplementaire pour l'interpolation cubic
tmp = (current_step+1) % nb_step;
current_interpol_valueX = current_interpol_valueX2;
current_interpol_valueY = current_interpol_valueY2;
current_interpol_valueX2 = abs((int32_t)thomas[0][tmp]);
current_interpol_valueY2 = abs((int32_t)thomas[1][tmp]);
}
last_step = current_step;
}
switch(toggle) {
case 0: // saw
tmpS = current_interpol_valueX - 0x40000000;
tmpS = tmpS >> 15;
tmp2 = (LFO1_phase & 0x03FFFFFF)>>10;
tmpS *= tmp2;
outX = 0x80000000 - current_interpol_valueX + tmpS;
tmpS = current_interpol_valueY - 0x40000000;
tmpS = tmpS >> 16;
tmpS *= tmp2;
outY = 0x40000000 + tmpS;
break;
case 1: // no interpolation
outX = current_interpol_valueX;
outY = current_interpol_valueY;
break;
/* case 1: // linear interpolation
tmpS = current_interpol_valueX - last_interpol_valueX;
tmpS = tmpS >> 16;
tmp2 = (LFO1_phase & 0x03FFFFFF)>>10;
tmpS *= tmp2;
outX = last_interpol_valueX + tmpS;
tmpS = current_interpol_valueY - last_interpol_valueY;
tmpS = tmpS >> 16;
tmp2 = (LFO1_phase & 0x03FFFFFF)>>10;
tmpS *= tmp2;
outY = last_interpol_valueY + tmpS;
break;*/
case 2: // cubic interpolation
tmp2 = (LFO1_phase & 0x03FFFFFF)>>10;
outX = tabread4(previous_interpol_valueX>>17, last_interpol_valueX>>17, current_interpol_valueX>>17, current_interpol_valueX2>>17, tmp2);
outX <<= 17;
outY = tabread4(previous_interpol_valueY>>17, last_interpol_valueY>>17, current_interpol_valueY>>17, current_interpol_valueY2>>17, tmp2);
outY <<= 17;
break;
}
outSX = outX^0x80000000;
outSX += 0x40000000;
outSX += outSX>>2;
outX = outSX^0x80000000;
outSY = outY^0x80000000;
outSY += 0x40000000;
outSY += outSY>>2;
outY = outSY^0x80000000;
audio_outL = outX;
audio_outR = outY;
}