-
Notifications
You must be signed in to change notification settings - Fork 1
/
bac.py
364 lines (321 loc) · 15.4 KB
/
bac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import collections
import json
import os
import numpy as np
import scipy.optimize
from mol import str_to_mol, geo_to_mol, get_features, get_bac_correction
from util import calc_rmse, calc_mae, shuffle_arrays, split_arrays, make_folds, concat_folds
def fit_bac(cdata, edata, out_dir, uncertainties=None,
geos=None, geo_exceptions=None, mults=None,
val_split=0.0, folds=1, use_atom_features=False,
global_min=False, global_min_iter=10, lam=0.0):
"""
cdata: Dictionary of calculated data
edata: Dictionary of experimental data
out_dir: Output directory
uncertainties: Dictionary of uncertainties
geos: Use BAC form with atom/bond types if geometries are not provided
geo_exceptions: Override the geometry check for these identifiers
mults: Dictionary of multiplicities
val_split: Fraction of data to use as validation set
folds: Number of folds for cross-validation (overrides val_split if >1)
use_atom_features: Use atom features instead of bond features
global_min: Use the basin hopping algorithm for global minimization
lam: Regularization parameter
Return dictionary of new calculated data
"""
bond_types = True if geos is None else False
# Only use calculated molecules that are also in experimental ones
ids, mols, hexpt, hcalc, weights = [], [], [], [], []
for ident, h in edata.iteritems():
if ident in cdata:
ids.append(ident)
if bond_types:
mols.append(str_to_mol(ident))
else:
mol = geo_to_mol(geos[ident])
if ident not in geo_exceptions:
mol_check = str_to_mol(ident, single_bonds=True)
if not mol_check.isIsomorphic(mol):
raise Exception('Geometry does not match identifier {}'.format(ident))
if mults:
mol.multiplicity = mults[ident]
mols.append(mol)
hexpt.append(h)
hcalc.append(cdata[ident])
if uncertainties:
weights.append(1.0 / uncertainties[ident]**2.0)
hexpt = np.array(hexpt)
hcalc = np.array(hcalc)
weights = np.array(weights)
rmse_prev = calc_rmse(hexpt, hcalc)
mae_prev = calc_mae(hexpt, hcalc)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
# Display the 10 worst ones before fitting
diff = hexpt - hcalc
print('Worst ones before fitting:')
large_diff = [(ids[i], abs(d), hexpt[i], hcalc[i]) for i, d in enumerate(diff)]
large_diff.sort(key=lambda _x: _x[1], reverse=True)
for ident, d, hexpti, hcalci in large_diff[:10][::-1]:
print('{} {: .2f} {: .2f} {: .2f}'.format(ident, d, hexpti, hcalci))
print
with open(os.path.join(out_dir, 'worst_errors.txt'), 'w') as f:
f.write('Worst ones before fitting:\n')
for ident, d, hexpti, hcalci in large_diff[:10][::-1]:
f.write('{} {: .2f} {: .2f} {: .2f}\n'.format(ident, d, hexpti, hcalci))
f.write('\n')
# Shuffle data and set up some arrays
if folds > 1:
shuffle_arrays(ids, mols, hexpt, hcalc)
rmses, rmses_train, rmses_val = [], [], []
maes, maes_train, maes_val = [], [], []
hbacs, output_strs, param_dicts = [], [], []
def _postprocess(_hexpt, _hbac,
_hexpt_train, _hbac_train,
_hexpt_val, _hbac_val,
_output_str, _param_dict):
rmses.append(calc_rmse(_hexpt, _hbac))
maes.append(calc_mae(_hexpt, _hbac))
_rmse_train = calc_rmse(_hexpt_train, _hbac_train)
rmses_train.append(_rmse_train)
maes_train.append(calc_mae(_hexpt_train, _hbac_train))
_rmse_val = calc_rmse(_hexpt_val, _hbac_val)
rmses_val.append(_rmse_val)
maes_val.append(calc_mae(_hexpt_val, _hbac_val))
hbacs.append(_hbac)
output_strs.append(_output_str)
param_dicts.append(_param_dict)
print('RMSE train/val: {:.2f}/{:.2f}'.format(_rmse_train, _rmse_val))
print('Parameters:')
print(output_str)
if bond_types:
# Get number of atoms or bonds of each type as features
if use_atom_features:
features = [get_features(mol, atom_features=True, bond_features=False) for mol in mols]
else:
features = [get_features(mol, atom_features=False, bond_features=True) for mol in mols]
feature_keys = list({k for f in features for k in f})
feature_keys.sort()
x, nocc = make_feature_mat(features, feature_keys)
# for idx in np.where(nocc <= 1)[0][::-1]: # Remove features if they only occur once
# del feature_keys[idx]
# x, nocc = make_feature_mat(features, feature_keys)
data = (features, hexpt, hcalc, weights)
folded_data = make_folds(folds, *data)
for fold_num in range(folds):
print('Fold {}'.format(fold_num+1))
if folds > 1:
split_data = concat_folds(fold_num, *folded_data)
else:
# Split off validation data
split_data = split_arrays(1.0-val_split, *data)
features_train, features_val, hexpt_train, hexpt_val, hcalc_train, hcalc_val, weights_train, _ = split_data
y_train = hexpt_train - hcalc_train
x_train, nocc = make_feature_mat(features_train, feature_keys)
weight_mat = np.diag(weights_train) if np.size(weights_train) > 0 else np.eye(len(x_train))
w, ypred = lin_reg(x_train, y_train, weight_mat)
hbac_train = hcalc_train + ypred
xval, _ = make_feature_mat(features_val, feature_keys)
hbac = hcalc + np.dot(x, w)
hbac_val = hcalc_val + np.dot(xval, w)
output_str = ''
for fk, wi, n in zip(feature_keys, w, nocc):
output_str += '{:<5} {: .4f} {}\n'.format(fk, wi, n)
param_dict = {fk: wi for fk, wi in zip(feature_keys, w)}
_postprocess(hexpt, hbac, hexpt_train, hbac_train, hexpt_val, hbac_val,
output_str, param_dict)
else:
# Technically, it's possible that some atom type is not present in mols_train, but that's very unlikely
all_atom_symbols = list({atom.element.symbol for mol in mols for atom in mol.atoms})
all_atom_symbols.sort()
nelements = len(all_atom_symbols)
low, high = -1e6, 1e6 # Arbitrarily large, just so that we can use bounds in global minimization
if mults:
w0 = np.zeros(3 * nelements + 1) + 1e-6 # Order is a, aii, b, k
wmin = [low] * nelements + [0] * nelements + [low] * nelements + [low]
wmax = [high] * (3 * nelements + 1)
else:
w0 = np.zeros(3 * nelements) + 1e-6 # Order is a, aii, b
wmin = [low] * nelements + [0] * nelements + [low] * nelements
wmax = [high] * 3 * nelements
bounds = [(l, h) for l, h in zip(wmin, wmax)]
data = (mols, hexpt, hcalc, weights)
folded_data = make_folds(folds, *data)
for fold_num in range(folds):
print('Fold {}'.format(fold_num+1))
if folds > 1:
split_data = concat_folds(fold_num, *folded_data)
else:
# Split off validation data
split_data = split_arrays(1.0-val_split, *data)
mols_train, mols_val, hexpt_train, hexpt_val, hcalc_train, hcalc_val, weights_train, _ = split_data
weight_mat = np.diag(weights_train) if np.size(weights_train) > 0 else np.eye(len(mols_train))
minimizer_kwargs = dict(method='SLSQP', # Gradient-free minimization is a lot faster
args=(all_atom_symbols, mols_train, hexpt_train, hcalc_train, weight_mat, lam),
bounds=bounds)
if global_min:
take_step = RandomDisplacementBounds(wmin, wmax)
res = scipy.optimize.basinhopping(objfun, w0, niter=global_min_iter,
minimizer_kwargs=minimizer_kwargs,
take_step=take_step, disp=True)
else:
res = scipy.optimize.minimize(objfun, w0, **minimizer_kwargs)
w = res.x
print(res.fun)
hbac = get_hbac(w, all_atom_symbols, mols, hcalc)
hbac_train = get_hbac(w, all_atom_symbols, mols_train, hcalc_train)
hbac_val = get_hbac(w, all_atom_symbols, mols_val, hcalc_val)
a, aii, b, k = get_params(w, all_atom_symbols)
param_dict = {'a': a, 'aii': aii, 'b': b, 'k': k}
output_str = 'Atom A B Aii\n'
for s, wi in a.iteritems():
output_str += ' {:<3} {: .4f} {: .4f} {: .4f}\n'.format(s, wi, b[s], aii[s])
output_str += 'K = {:.4f}\n'.format(k)
_postprocess(hexpt, hbac, hexpt_train, hbac_train, hexpt_val, hbac_val, output_str, param_dict)
# Display the 10 worst ones after fitting (averaged across models)
hbac_mean = np.mean(hbacs, axis=0)
diff_new = hexpt - hbac_mean
print('Worst ones after fitting:')
large_diff = [(ids[i], abs(d), hexpt[i], hbac_mean[i]) for i, d in enumerate(diff_new)]
large_diff.sort(key=lambda _x: _x[1], reverse=True)
for ident, d, hexpti, hbaci in large_diff[:10][::-1]:
print('{} {: .2f} {: .2f} {: .2f}'.format(ident, d, hexpti, hbaci))
with open(os.path.join(out_dir, 'worst_errors.txt'), 'a') as f:
f.write('Worst ones after fitting:\n')
for ident, d, hexpti, hbaci in large_diff[:10][::-1]:
f.write('{} {: .2f} {: .2f} {: .2f}\n'.format(ident, d, hexpti, hbaci))
rmse = np.mean(rmses)
mae = np.mean(maes)
rmse_train = np.mean(rmses_train)
mae_train = np.mean(maes_train)
rmse_val = np.mean(rmses_val)
mae_val = np.mean(maes_val)
print('\nAverages:')
print('RMSE train/val: {:.2f}/{:.2f}'.format(rmse_train, rmse_val))
print('MAE train/val: {:.2f}/{:.2f}'.format(mae_train, mae_val))
print('Total RMSE before/after fitting: {:.2f}/{:.2f}'.format(rmse_prev, rmse))
print('Total MAE before/after fitting: {:.2f}/{:.2f}'.format(mae_prev, mae))
error_path = os.path.join(out_dir, 'errors.txt')
bac_path = os.path.join(out_dir, 'bacs.txt')
json_path = os.path.join(out_dir, 'bacs.json')
with open(error_path, 'w') as f:
f.write('RMSE before/after: {:.2f}/{:.2f}\n'.format(rmse_prev, rmse))
f.write('MAE before/after: {:.2f}/{:.2f}\n'.format(mae_prev, mae))
with open(bac_path, 'w') as f:
for output_str in output_strs:
f.write(output_str + '\n')
with open(json_path, 'w') as f:
if len(param_dicts) > 1:
json.dump(param_dicts, f, indent=4, separators=(',', ': '))
else:
json.dump(param_dicts[0], f, indent=4, separators=(',', ': '))
return collections.OrderedDict(zip(ids, hbac_mean))
def apply_bac(data, bacs, geos=None, data_comp=None):
bond_types = True if geos is None else False
use_atom_features = not any('-' in k for k in bacs.keys())
ids, mols, hprev = [], [], []
for ident, h in data.iteritems():
ids.append(ident)
if bond_types:
mols.append(str_to_mol(ident))
else:
mol = geo_to_mol(geos[ident])
mols.append(mol)
hprev.append(h)
hprev = np.array(hprev)
if bond_types:
if use_atom_features:
features = [get_features(mol, atom_features=True, bond_features=False) for mol in mols]
else:
features = [get_features(mol, atom_features=False, bond_features=True) for mol in mols]
feature_keys = {k for f in features for k in f}
if not feature_keys.issubset(set(bacs.keys())):
raise Exception('Data contains bond or atom types that are not available in BAC parameters')
feature_keys = list(feature_keys)
feature_keys.sort()
x, _ = make_feature_mat(features, feature_keys)
w = np.array([bacs[k] for k in feature_keys])
hbac = hprev + np.dot(x, w)
else:
all_atom_symbols = {atom.element.symbol for mol in mols for atom in mol.atoms}
if not all_atom_symbols.issubset(set(bacs['a'].keys())):
raise Exception('Data contains atom types that are not available in BAC parameters')
hcorr = np.array([get_bac_correction(mol, **bacs) for mol in mols])
hbac = hprev - hcorr
data_bac = collections.OrderedDict(zip(ids, hbac))
if data_comp is not None:
data_copy = collections.OrderedDict((k, data[k]) for k in data_comp if k in data)
data_bac = collections.OrderedDict((k, data_bac[k]) for k in data_copy)
data_comp_subset = collections.OrderedDict((k, data_comp[k]) for k in data_copy)
hprev = np.array(data_copy.values())
hbac = np.array(data_bac.values())
hcomp = np.array(data_comp_subset.values())
rmse_prev = calc_rmse(hcomp, hprev)
mae_prev = calc_mae(hcomp, hprev)
rmse = calc_rmse(hcomp, hbac)
mae = calc_mae(hcomp, hbac)
print('Number of molecules: {}'.format(len(data_copy)))
print('RMSE before/after fitting: {:.2f}/{:.2f}'.format(rmse_prev, rmse))
print('MAE before/after fitting: {:.2f}/{:.2f}'.format(mae_prev, mae))
return data_bac
def lin_reg(x, y, weight_mat):
w = np.linalg.solve(np.dot(x.T, np.dot(weight_mat, x)), np.dot(x.T, np.dot(weight_mat, y)))
ypred = np.dot(x, w)
return w, ypred
def make_feature_mat(features, keys):
x = np.zeros((len(features), len(keys)))
for idx, f in enumerate(features):
flist = []
for k in keys:
try:
flist.append(f[k])
except KeyError:
flist.append(0.0)
x[idx] = np.array(flist)
nocc = np.sum(x, axis=0).astype(np.int)
return x, nocc
def objfun(w, keys, mols, hexpt, hcalc, weight_mat, lam=0.0):
"""
w: parameters
keys: list of keys corresponding to parameters (w is of size 3*len(keys),
because there are 3 parameters per element type)
mols: molecules with geometries
hexpt: experimental data
hcalc: calculated data
weight_mat: weight matrix
lam: regularization parameter
Return L2 loss
"""
hbac = get_hbac(w, keys, mols, hcalc)
diff = hexpt - hbac
return np.dot(diff, np.dot(weight_mat, diff)) / len(hexpt) + lam * np.dot(w, w)
def get_hbac(w, keys, mols, hcalc):
a, aii, b, k = get_params(w, keys)
hcorr = np.array([get_bac_correction(mol, a, aii, b, k) for mol in mols])
return hcalc - hcorr # Note the sign here
def get_params(w, keys):
nelements = len(keys)
a = dict(zip(keys, w[:nelements]))
aii = dict(zip(keys, w[nelements:2*nelements]))
b = dict(zip(keys, w[2*nelements:3*nelements]))
try:
k = w[3*nelements]
except IndexError:
k = 0.0
return a, aii, b, k
class RandomDisplacementBounds(object):
"""random displacement with bounds"""
def __init__(self, xmin, xmax, stepsize=0.5):
self.xmin = xmin
self.xmax = xmax
self.stepsize = stepsize
def __call__(self, x):
"""take a random step but ensure the new position is within the bounds"""
while True:
xnew = x + np.random.uniform(-self.stepsize, self.stepsize, np.shape(x))
if np.all(xnew < self.xmax) and np.all(xnew > self.xmin):
break
return xnew