-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalcEI.m
42 lines (38 loc) · 1.18 KB
/
calcEI.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function ret=calcEI(xstar, x, y, k, sigma_f2, l, sigma_n2)
% CALCEI - Calculates the expected improvement at xstar.
%
% Syntax: result = calcEI(xstar, x, y, k, sigma_f2, l, sigma_n2)
%
% Inputs:
% xstar - scalar value
% x - training points
% y - values of f at x
% k - kernel function
% sigma_f2 - value of sigma_f^2 to be used in k
% l - value of l to be used in k
% sigma_n2 - value of sigma_n^2 referring to the expected noise
%
% Outputs:
% ret - the expected improvement at xstar with training values x.
%
% Examples:
% f = @(x) -x.^2+4.3*x;
% k = @(x,y,sigma_f2,l) sigma_f2*exp(-(((x-y)^2)/(2*l^2)));
% ret=calcEI(3,[1,2,4,5],f([1,2,4,5]),k,1,1,0);
%
% Author: Christoph Glanzer
%
%------------- BEGIN CODE --------------
% Calculate the GP posterior and M_n
[mu,sigma2] = GP(xstar, x, y, k, sigma_f2, l, sigma_n2);
[ybest,~] = findMax(y); % M_n
% This is the explicit formula by E. Vazquez and J. Bect (2010, eq. 11)
if (sigma2 > 0)
u = (mu - ybest)/sqrt(sigma2);
ret = sqrt(sigma2)*(normpdf(u) + u*normcdf(u));
elseif (mu > ybest)
ret = mu-ybest;
else
ret = 0;
end
end