-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGP.m
80 lines (75 loc) · 2.43 KB
/
GP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [mu, sigma2] = GP(xstar, x, y, k, sigma_f2, l, sigma_n2)
% GP - calculates the GP posterior at xstar, given prior information.
%
% Syntax: [mu, sigma2] = GP(xstar, x, y, k, sigma_f2, l, sigma_n2)
%
% Inputs:
% xstar - vector of estimation points
% x - training points
% y - values of f at x
% k - kernel function
% sigma_f2 - value of sigma_f^2 to be used in k
% l - value of l to be used in k
% sigma_n2 - value of sigma_n^2 referring to the expected noise
%
% Outputs:
% mu - the expected posterior value \EE ( \xi(xstar) | (x,f(x)) )
% sigma2 - the covariance matrix \Cov ( \xi(xstar) | (x,f(x)) )
%
% Examples:
% f = @(x) -x.^2+4.3*x;
% k = @(x,y,sigma_f2,l) sigma_f2*exp(-(((x-y)^2)/(2*l^2)));
% [mu, sigma2] = GP([1.5,3.5],[1,2,4,5],f([1,2,4,5]),k,1,1,0);
%
% Author: Christoph Glanzer
%
%------------- BEGIN CODE --------------
% We need column vectors
[a,b] = size(xstar);
if (b > a) xstar = xstar'; end
[a,b] = size(x);
if (b > a) x = x'; end
[a,b] = size(y);
if (b > a) y = y'; end
% Calculate all the matrices needed
n = length(x);
m = length(xstar);
K = zeros(n,n);
Kstar = zeros(n,m);
Kstarstar = zeros(m,m);
for i = 1:n
for j = 1:n
K(i,j) = k(x(i), x(j), sigma_f2, l);
end
end
for i = 1:n
for j = 1:m
Kstar(i,j) = k(x(i), xstar(j), sigma_f2, l);
end
end
for i = 1:m
for j = 1:m
Kstarstar(i,j) = k(xstar(i), xstar(j), sigma_f2, l);
end
end
% The following code avoids the problem of very small eigenvalues which are
% treated like zeros by Matlab. Otherwise, cholesky() doesn't work.
% Find out if there is an eigenvalue that is extremely small
SPD = true;
ew = eig(K);
for i = 1:length(ew)
if (abs(ew(i)) < 1e-10) SPD = false; end
end
if (SPD == false) % If this is the case, increase those EWs a tiny bit
K = K + 1e-5*eye(n);
end
% Note that the code above changes the result a bit. However, 1e-5
% is usually << stoppingCriterion in the EI algorithm, i.e. the influence is
% very small and can be ignored. However, this can lead to sigma2 being a
% very small negative value causing complex numbers to occur in the results
% (MATLAB(R) ignores them though). To avoid this, we return abs(sigma2).
R = chol(K+sigma_n2*eye(n));
mu = Kstar' * (R\(R'\y));
sigma2 = Kstarstar - Kstar' * (R\(R'\Kstar));
sigma2 = abs(sigma2); % See the note above
end