This repository has been archived by the owner on May 25, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
applics.h
407 lines (344 loc) · 13.8 KB
/
applics.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/***************************************************************************
* blitz/applics.h Applicative template classes
*
* $Id: applics.h,v 1.5 2003/12/11 03:44:22 julianc Exp $
*
* Copyright (C) 1997-2001 Todd Veldhuizen <[email protected]>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Suggestions: [email protected]
* Bugs: [email protected]
*
* For more information, please see the Blitz++ Home Page:
* http://oonumerics.org/blitz/
*
***************************************************************************/
#ifndef BZ_APPLICS_H
#define BZ_APPLICS_H
#ifndef BZ_BLITZ_H
#include <blitz/blitz.h>
#endif
#ifndef BZ_PROMOTE_H
#include <blitz/promote.h>
#endif
#ifndef BZ_NUMTRAIT_H
#include <blitz/numtrait.h>
#endif
BZ_NAMESPACE(blitz)
// These base classes are included for no other reason than to keep
// the applicative templates clustered together in a graphical
// class browser.
class ApplicativeTemplatesBase { };
class TwoOperandApplicativeTemplatesBase : public ApplicativeTemplatesBase { };
class OneOperandApplicativeTemplatesBase : public ApplicativeTemplatesBase { };
template<typename P_numtype1, typename P_numtype2>
class _bz_Add : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x + y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Subtract : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x - y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Multiply : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x * y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Divide : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x / y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Mod : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x % y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_BitwiseXOR : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x ^ y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_BitwiseAnd : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x & y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_BitwiseOr : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x | y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_ShiftRight : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x >> y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_ShiftLeft : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x << y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Min : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return (x < y ? x : y); }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Max : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef BZ_PROMOTE(T_numtype1,T_numtype2) T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return (x > y ? x : y); }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Greater : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x > y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Less : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x < y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_GreaterOrEqual : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x >= y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_LessOrEqual : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x <= y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_Equal : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x == y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_NotEqual : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x != y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_LogicalAnd : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x && y; }
};
template<typename P_numtype1, typename P_numtype2>
class _bz_LogicalOr : public TwoOperandApplicativeTemplatesBase {
public:
typedef P_numtype1 T_numtype1;
typedef P_numtype2 T_numtype2;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline T_promote apply(P_numtype1 x, P_numtype2 y)
{ return x || y; }
};
template<typename P_numtype_in, typename P_numtype_out>
class _bz_Cast : public OneOperandApplicativeTemplatesBase {
public:
typedef P_numtype_in T_numtype1;
typedef P_numtype_out T_promote;
typedef T_promote T_numtype;
static inline P_numtype_out apply(P_numtype_in x)
{ return P_numtype_out(x); }
};
template<typename P_numtype>
class _bz_LogicalNot : public OneOperandApplicativeTemplatesBase {
public:
typedef P_numtype T_numtype1;
typedef bool T_promote;
typedef T_promote T_numtype;
static inline P_numtype apply(P_numtype x)
{ return !x; }
};
template<typename P_numtype>
class _bz_BitwiseNot : public OneOperandApplicativeTemplatesBase {
public:
typedef P_numtype T_numtype1;
typedef T_numtype1 T_promote;
typedef T_promote T_numtype;
static inline P_numtype apply(P_numtype x)
{ return ~x; }
};
/*****************************************************************************
* Math Functions
*****************************************************************************/
// Applicative templates for these functions are defined in
// <blitz/mathfunc.h>, which is included below:
//
// abs(i), labs(l) Absolute value
// acos(d), acols(ld) Inverse cosine
// acosh(d) Inverse hyperbolic cosine
// asin(d), asinl(ld) Inverse sine
// asinh(d) Inverse hyperbolic sine
// atan(d), atanl(ld) Inverse tangent
// atan2(d,d), atan2l(ld,ld) Inverse tangent
// atanh(d) Inverse hyperbolic tangent
// cbrt(x) Cube root
// ceil(d), ceill(ld) Smallest f-int not less than x
// int class(d) Classification of x (FP_XXXXX)
// cos(d), cosl(ld) Cosine
// cosh(d), coshl(ld) Hyperbolic cosine
// copysign(d,d) Return 1st arg with same sign as 2nd
// drem(x,x) IEEE remainder
// exp(d), expl(ld) Exponential
// expm1(d) Exp(x)-1
// erf(d), erfl(ld) Error function
// erfc(d), erfcl(ld) Complementary error function
// fabs(d), fabsl(ld) Floating point absolute value
// int finite(d) Nonzero if finite
// floor(d), floor(ld) Largest f-int not greater than x
// fmod(d,d), fmodl(ld,ld) Floating point remainder
// frexp(d, int* e) Break into mantissa/exponent (*)
// frexpl(ld, int* e) Break into mantissa/exponent (*)
// gammaFunc(d) Gamma function (** needs special
// implementation using lgamma)
// hypot(d,d) Hypotenuse: sqrt(x*x+y*y)
// int ilogb(d) Integer unbiased exponent
// int isnan(d) Nonzero if NaNS or NaNQ
// int itrunc(d) Truncate and convert to integer
// j0(d) Bessel function first kind, order 0
// j1(d) Bessel function first kind, order 1
// jn(int, double) Bessel function first kind, order i
// ldexp(d,i), ldexpl(ld,i) Compute d * 2^i
// lgamma(d), lgammald(ld) Log absolute gamma
// log(d), logl(ld) Natural logarithm
// logb(d) Unbiased exponent (IEEE)
// log1p(d) Compute log(1 + x)
// log10(d), log10l(ld) Logarithm base 10
// modf(d, int* i), modfl(ld, int* i) Break into integral/fractional part
// double nearest(double) Nearest floating point integer
// nextafter(d, d) Next representable neighbor of 1st
// in direction of 2nd
// pow(d,d), pow(ld,ld) Computes x ^ y
// d remainder(d,d) IEEE remainder
// d rint(d) Round to f-integer (depends on mode)
// d rsqrt(d) Reciprocal square root
// d scalb(d,d) Return x * (2^y)
// sin(d), sinl(ld) Sine
// sinh(d), sinhl(ld) Hyperbolic sine
// sqr(x) Return x * x
// sqrt(d), sqrtl(ld) Square root
// tan(d), tanl(ld) Tangent
// tanh(d), tanhl(ld) Hyperbolic tangent
// trunc(d) Nearest f-int in the direction of 0
// unsigned uitrunc(d) Truncate and convert to unsigned
// int unordered(d,d) Nonzero if comparison is unordered
// y0(d) Bessel function 2nd kind, order 0
// y1(d) Bessel function 2nd kind, order 1
// yn(i,d) Bessel function 2nd kind, order d
BZ_NAMESPACE_END
#ifndef BZ_MATHFUNC_H
#include <blitz/mathfunc.h>
#endif
#ifndef BZ_MATHF2_H
#include <blitz/mathf2.h>
#endif
#endif // BZ_APPLICS_H