-
Notifications
You must be signed in to change notification settings - Fork 3
/
draft-irtf-cfrg-vrf.txt
3136 lines (2131 loc) · 119 KB
/
draft-irtf-cfrg-vrf.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
CFRG S. Goldberg
Internet-Draft Boston University
Intended status: Informational L. Reyzin
Expires: 10 February 2023 Boston University and Algorand
D. Papadopoulos
Hong Kong University of Science and Technology
J. Vcelak
NS1
9 August 2022
Verifiable Random Functions (VRFs)
draft-irtf-cfrg-vrf-15
Abstract
A Verifiable Random Function (VRF) is the public-key version of a
keyed cryptographic hash. Only the holder of the secret key can
compute the hash, but anyone with the public key can verify the
correctness of the hash. VRFs are useful for preventing enumeration
of hash-based data structures. This document specifies VRF
constructions based on RSA and elliptic curves that are secure in the
cryptographic random oracle model.
This document is a product of the Crypto Forum Research Group (CFRG)
in the IRTF.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 10 February 2023.
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
Goldberg, et al. Expires 10 February 2023 [Page 1]
Internet-Draft VRF August 2022
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Requirements . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4
2. VRF Algorithms . . . . . . . . . . . . . . . . . . . . . . . 4
3. VRF Security Properties . . . . . . . . . . . . . . . . . . . 5
3.1. Full Uniqueness . . . . . . . . . . . . . . . . . . . . . 5
3.2. Full Collison Resistance . . . . . . . . . . . . . . . . 6
3.3. Trusted Uniqueness and Trusted Collision Resistance . . . 6
3.4. Full Pseudorandomness or Selective Pseudorandomness . . . 7
3.5. Unpredictability Under Malicious Key Generation . . . . . 8
4. RSA Full Domain Hash VRF (RSA-FDH-VRF) . . . . . . . . . . . 8
4.1. RSA-FDH-VRF Proving . . . . . . . . . . . . . . . . . . . 10
4.2. RSA-FDH-VRF Proof to Hash . . . . . . . . . . . . . . . . 10
4.3. RSA-FDH-VRF Verifying . . . . . . . . . . . . . . . . . . 11
4.4. RSA-FDH-VRF Ciphersuites . . . . . . . . . . . . . . . . 12
5. Elliptic Curve VRF (ECVRF) . . . . . . . . . . . . . . . . . 12
5.1. ECVRF Proving . . . . . . . . . . . . . . . . . . . . . . 15
5.2. ECVRF Proof to Hash . . . . . . . . . . . . . . . . . . . 16
5.3. ECVRF Verifying . . . . . . . . . . . . . . . . . . . . . 16
5.4. ECVRF Auxiliary Functions . . . . . . . . . . . . . . . . 18
5.4.1. ECVRF Encode to Curve . . . . . . . . . . . . . . . . 18
5.4.2. ECVRF Nonce Generation . . . . . . . . . . . . . . . 20
5.4.3. ECVRF Challenge Generation . . . . . . . . . . . . . 22
5.4.4. ECVRF Decode Proof . . . . . . . . . . . . . . . . . 22
5.4.5. ECVRF Validate Key . . . . . . . . . . . . . . . . . 23
5.5. ECVRF Ciphersuites . . . . . . . . . . . . . . . . . . . 25
6. Implementation Status . . . . . . . . . . . . . . . . . . . . 27
7. Security Considerations . . . . . . . . . . . . . . . . . . . 28
7.1. Key Generation . . . . . . . . . . . . . . . . . . . . . 29
7.1.1. Uniqueness and collision resistance under malicious key
generation . . . . . . . . . . . . . . . . . . . . . 29
7.1.2. Pseudorandomness under malicious key generation . . . 29
7.1.3. Unpredictability under malicious key generation . . . 30
7.2. Security Levels . . . . . . . . . . . . . . . . . . . . . 30
7.3. Selective vs. Full Pseudorandomness . . . . . . . . . . . 31
7.4. Proper pseudorandom nonce for ECVRF . . . . . . . . . . . 31
7.5. Side-channel attacks . . . . . . . . . . . . . . . . . . 32
Goldberg, et al. Expires 10 February 2023 [Page 2]
Internet-Draft VRF August 2022
7.6. Proofs provide no secrecy for the VRF input . . . . . . . 32
7.7. Prehashing . . . . . . . . . . . . . . . . . . . . . . . 33
7.8. Hash function domain separation . . . . . . . . . . . . . 33
7.9. Hash function salting . . . . . . . . . . . . . . . . . . 34
7.10. Futureproofing . . . . . . . . . . . . . . . . . . . . . 34
8. Change Log . . . . . . . . . . . . . . . . . . . . . . . . . 34
9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 36
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.1. Normative References . . . . . . . . . . . . . . . . . . 37
10.2. Informative References . . . . . . . . . . . . . . . . . 38
Appendix A. Test Vectors for the RSA-FDH-VRF ciphersuites . . . 39
A.1. RSA-FDH-VRF-SHA256 . . . . . . . . . . . . . . . . . . . 41
A.2. RSA-FDH-VRF-SHA384 . . . . . . . . . . . . . . . . . . . 43
A.3. RSA-FDH-VRF-SHA512 . . . . . . . . . . . . . . . . . . . 45
Appendix B. Test Vectors for the ECVRF ciphersuites . . . . . . 47
B.1. ECVRF-P256-SHA256-TAI . . . . . . . . . . . . . . . . . . 47
B.2. ECVRF-P256-SHA256-SSWU . . . . . . . . . . . . . . . . . 49
B.3. ECVRF-EDWARDS25519-SHA512-TAI . . . . . . . . . . . . . . 51
B.4. ECVRF-EDWARDS25519-SHA512-ELL2 . . . . . . . . . . . . . 53
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 55
1. Introduction
A Verifiable Random Function (VRF) [MRV99] is the public-key version
of a keyed cryptographic hash. Only the holder of the VRF secret key
can compute the hash, but anyone with the corresponding public key
can verify the correctness of the hash.
A key application of the VRF is to provide privacy against offline
dictionary attacks (also known as enumeration attacks) on data stored
in a hash-based data structure. In this application, a Prover holds
the VRF secret key and uses the VRF hashing to construct a hash-based
data structure on the input data.
Due to the nature of the VRF, only the Prover can answer queries
about whether or not some data is stored in the data structure.
Anyone who knows the VRF public key can verify that the Prover has
answered the queries correctly. However, no offline inferences (i.e.
inferences without querying the Prover) can be made about the data
stored in the data structure.
This document defines VRFs based on RSA and elliptic curves. The
choices of VRFs for inclusion into this document were based, in part,
on synergy with existing RFCs and commonly available implementations
of individual components that are used within the VRFs.
Goldberg, et al. Expires 10 February 2023 [Page 3]
Internet-Draft VRF August 2022
The particular choice of the VRF for a given application depends on
the desired security properties, the availability of
cryptographically strong implementations, efficiency constraints, and
the trust one places in RSA and elliptic curve Diffie-Hellman
assumptions (and the trust in a particular choice of curve in case of
elliptic curves). Differences in the security properties provided by
the different options are discussed in Section 3 and Section 7.
This document represents the consensus of the Crypto Forum Research
Group (CFRG).
1.1. Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC8174].
1.2. Terminology
The following terminology is used through this document:
SK: The secret key for the VRF. (Note: the secret key is also
sometimes called "private key".)
PK: The public key for the VRF.
alpha or alpha_string: The input to be hashed by the VRF.
beta or beta_string: The VRF hash output.
pi or pi_string: The VRF proof.
Prover: The Prover holds the VRF secret key SK and public key PK.
Verifier: The Verifier holds the VRF public key PK.
Adversary: Potential attacker; often used to define a security
property.
Malicious (or adversarial): Performed by an adversary.
2. VRF Algorithms
A VRF comes with a key generation algorithm that generates a VRF
public key PK and secret key SK.
The prover hashes an input alpha using the VRF secret key SK to
obtain a VRF hash output beta
Goldberg, et al. Expires 10 February 2023 [Page 4]
Internet-Draft VRF August 2022
beta = VRF_hash(SK, alpha)
The VRF_hash algorithm is deterministic, in the sense that it always
produces the same output beta given the same pair of inputs (SK,
alpha).
The prover also uses the secret key SK to construct a proof pi that
beta is the correct hash output
pi = VRF_prove(SK, alpha)
The VRFs defined in this document allow anyone to deterministically
obtain the VRF hash output beta directly from the proof value pi by
using the function VRF_proof_to_hash:
beta = VRF_proof_to_hash(pi)
Thus, for VRFs defined in this document, VRF_hash is defined as
VRF_hash(SK, alpha) = VRF_proof_to_hash(VRF_prove(SK, alpha)),
and therefore this document will specify VRF_prove and
VRF_proof_to_hash rather than VRF_hash.
The proof pi allows a Verifier holding the public key PK to verify
that beta is the correct VRF hash of input alpha under key PK. Thus,
the VRFs defined in this document also come with an algorithm
VRF_verify(PK, alpha, pi)
that outputs (VALID, beta = VRF_proof_to_hash(pi)) if pi is valid,
and INVALID otherwise.
3. VRF Security Properties
VRFs are designed to ensure the following security properties:
uniqueness (full or trusted), collision resistance (full or trusted),
and pseudorandomness (full or selective). Some are designed to also
ensure unpredictability under malicious key generation. We now
describe these properties.
3.1. Full Uniqueness
Uniqueness means that, for any fixed VRF public key and for any input
alpha, it is infeasible to find proofs for more than one VRF output
beta.
More precisely, "full uniqueness" means that an adversary cannot find
Goldberg, et al. Expires 10 February 2023 [Page 5]
Internet-Draft VRF August 2022
* a VRF public key PK,
* a VRF input alpha,
* and two proofs pi1 and pi2
such that
* VRF_verify(PK, alpha, pi1) outputs (VALID, beta1),
* VRF_verify(PK, alpha, pi2) outputs (VALID, beta2),
* and beta1 is not equal to beta2.
3.2. Full Collison Resistance
Like cryptographic hash functions, VRFs are collision resistant.
Collison resistance means that it is infeasible to find two different
inputs alpha1 and alpha2 with the same output beta.
More precisely, "full collision resistance" means that an adversary
cannot find
* a VRF public key PK,
* two VRF inputs alpha1 and alpha2 that are not equal to each other,
* and two proofs pi1 and pi2
such that
* VRF_verify(PK, alpha1, pi1) outputs (VALID, beta1),
* VRF_verify(PK, alpha2, pi2) outputs (VALID, beta2),
* and beta1 is equal to beta2.
3.3. Trusted Uniqueness and Trusted Collision Resistance
Full uniqueness and full collision resistance hold even if the VRF
keys are generated maliciously. For some applications, it is
sufficient for a VRF to possess weaker security properties than full
uniqueness and full collision resistance, called "trusted uniqueness"
and "trusted collision resistance". These properties are the same as
full uniqueness and full collision resistance, respectively, but are
not guaranteed to hold if the adversary gets to choose the VRF public
key PK. Instead, they are guaranteed to hold only if the VRF keys PK
and SK are generated as specified by the VRF key generation algorithm
Goldberg, et al. Expires 10 February 2023 [Page 6]
Internet-Draft VRF August 2022
and then given to the adversary. In other words, they are guaranteed
to hold even if the adversary has the knowledge of SK and PK, but not
guaranteed to hold if the adversary has the ability to choose SK and
PK.
As further discussed in Section 7.1.1, some VRFs specified in this
document satisfy only trusted uniqueness and trusted collision
resistance. VRFs in this document that satisfy only trusted
uniqueness and trusted collision resistance MUST NOT be used in
applications that need protection against adversarial VRF key
generation.
3.4. Full Pseudorandomness or Selective Pseudorandomness
Pseudorandomness ensures that when someone who does not know SK sees
a VRF hash output beta without its corresponding VRF proof pi, then
beta is indistinguishable from a random value.
More precisely, suppose the public and secret VRF keys (PK, SK) were
generated correctly. Pseudorandomness ensures that the VRF hash
output beta (without its corresponding VRF proof pi) on any
adversarially chosen "target" VRF input alpha looks indistinguishable
from random for any adversary who does not know the VRF secret key
SK. This holds even if the adversary sees VRF hash outputs beta' and
proofs pi' for multiple other inputs alpha' (and even if those other
inputs alpha' are chosen by the adversary).
"Full pseudorandomness" security property holds even against an
adversary who is allowed to choose the "target" VRF input alpha at
any time, even after it observes VRF outputs beta' and proofs pi' on
a variety of chosen inputs alpha'.
"Selective pseudorandomness" is a weaker security property that
suffices in many applications. This security property holds against
an adversary who chooses the target VRF input alpha first, before it
learns the VRF public key PK and obtains VRF outputs beta' and proofs
pi' on other inputs alpha' of its choice.
As further discussed in Section 7.3, VRFs specified in this document
satisfy both full pseudorandomness and selective pseudorandomness,
but their quantitative security against the selective
pseudorandomness attack is stronger.
It is important to remember that the VRF output beta is always
distinguishable from random by the Prover, or by any other party that
knows the VRF secret key SK. Such a party can easily distinguish
beta from a random value by comparing beta to the result of
VRF_hash(SK, alpha).
Goldberg, et al. Expires 10 February 2023 [Page 7]
Internet-Draft VRF August 2022
Similarly, the VRF output beta is always distinguishable from random
by any party that knows a valid VRF proof pi corresponding to the VRF
input alpha, even if this party does not know the VRF secret key SK.
Such a party can easily distinguish beta from a random value by
checking whether VRF_verify(PK, alpha, pi) returns (VALID, beta).
Additionally, the VRF output beta may be distinguishable from random
if VRF key generation was not done correctly. (For example, if VRF
keys were generated with bad randomness.)
3.5. Unpredictability Under Malicious Key Generation
As explained in Section 3.4, pseudorandomness cannot hold against
malicious key generation. For instance, if an adversary outputs VRF
keys that are deterministically generated (or hard-coded and publicly
known), then the outputs are easily derived by anyone and are
therefore not pseudorandom.
There is, however, a different type of unpredictability that is
desirable in certain VRF applications (such as leader selection in
the consensus protocols of [GHMVZ17] and [DGKR18]), called
"unpredictability under malicious key generation". This property is
similar to the unpredictability achieved by an (ordinary, unkeyed)
cryptographic hash function: if the input has enough entropy (i.e.,
cannot be predicted), then the correct output is indistinguishable
from uniformly random, no matter how the VRF keys are generated.
A formal definition of this property appears in Section 3.2 of
[DGKR18]. As further discussed in Section 7.1.3, only some VRFs
specified in this document satisfy this property.
4. RSA Full Domain Hash VRF (RSA-FDH-VRF)
The RSA Full Domain Hash VRF (RSA-FDH-VRF) is a VRF that, for
suitable key lengths, satisfies the "trusted uniqueness", "trusted
collision resistance", and "full pseudorandomness" properties defined
in Section 3, as further discussed in Section 7. Its security
follows from the standard RSA assumption in the random oracle model.
Formal security proofs are in [PWHVNRG17].
The VRF computes the proof pi as a deterministic RSA signature on
input alpha using the RSA Full Domain Hash Algorithm [RFC8017]
parametrized with the selected hash algorithm. RSA signature
verification is used to verify the correctness of the proof. The VRF
hash output beta is simply obtained by hashing the proof pi with the
selected hash algorithm.
Goldberg, et al. Expires 10 February 2023 [Page 8]
Internet-Draft VRF August 2022
The key pair for RSA-FDH-VRF MUST be generated in a way that it
satisfies the conditions specified in Section 3 of [RFC8017].
In this section, the notation from [RFC8017] is used.
Parameters used:
(n, e) - RSA public key
K - RSA private key (its representation is implementation-
dependent)
k - length in octets of the RSA modulus n (k must be less than
2^32)
Fixed options (specified in Section 4.4):
Hash - cryptographic hash function
hLen - output length in octets of hash function Hash
suite_string - an octet string specifying the RSA-FDH-VRF
ciphersuite, which determines the above options
Primitives used:
I2OSP - Conversion of a nonnegative integer to an octet string as
defined in Section 4.1 of [RFC8017] (given an integer and a length
in octets, produces a big-endian representation of the integer,
zero-padded to the desired length)
OS2IP - Conversion of an octet string to a nonnegative integer as
defined in Section 4.2 of [RFC8017] (given a big-endian encoding
of an integer, produces the integer)
RSASP1 - RSA signature primitive as defined in Section 5.2.1 of
[RFC8017] (given a private key and an input, raises the input to
the private RSA exponent modulo n)
RSAVP1 - RSA verification primitive as defined in Section 5.2.2 of
[RFC8017] (given a public key and an input, raises the input to
the public RSA exponent modulo n)
MGF1 - Mask Generation Function based on the hash function Hash as
defined in Section B.2.1 of [RFC8017] (given an input, produces a
random-oracle-like output of desired length)
|| - octet string concatenation
Goldberg, et al. Expires 10 February 2023 [Page 9]
Internet-Draft VRF August 2022
4.1. RSA-FDH-VRF Proving
RSAFDHVRF_prove(K, alpha_string[, MGF_salt])
Input:
K - RSA private key
alpha_string - VRF hash input, an octet string
Optional Input:
MGF_salt - a public octet string used as a hash function salt;
this input is not used when MGF_salt is specified as part of the
ciphersuite
Output:
pi_string - proof, an octet string of length k
Steps:
1. mgf_domain_separator = 0x01
2. EM = MGF1(suite_string || mgf_domain_separator || MGF_salt ||
alpha_string, k - 1)
3. m = OS2IP(EM)
4. s = RSASP1(K, m)
5. pi_string = I2OSP(s, k)
6. Output pi_string
4.2. RSA-FDH-VRF Proof to Hash
RSAFDHVRF_proof_to_hash(pi_string)
Input:
pi_string - proof, an octet string of length k
Output:
beta_string - VRF hash output, an octet string of length hLen
Important note:
Goldberg, et al. Expires 10 February 2023 [Page 10]
Internet-Draft VRF August 2022
RSAFDHVRF_proof_to_hash should be run only on pi_string that is
known to have been produced by RSAFDHVRF_prove, or from within
RSAFDHVRF_verify as specified in Section 4.3.
Steps:
1. proof_to_hash_domain_separator = 0x02
2. beta_string = Hash(suite_string ||
proof_to_hash_domain_separator || pi_string)
3. Output beta_string
4.3. RSA-FDH-VRF Verifying
RSAFDHVRF_verify((n, e), alpha_string, pi_string[, MGF_salt])
Input:
(n, e) - RSA public key
alpha_string - VRF hash input, an octet string
pi_string - proof to be verified, an octet string of length k
Optional Input:
MGF_salt - a public octet string used as a hash function salt;
this input is not used when MGF_salt is specified as part of the
ciphersuite
Output:
Output:
("VALID", beta_string), where beta_string is the VRF hash output,
an octet string of length hLen; or
"INVALID"
Steps:
1. s = OS2IP(pi_string)
2. m = RSAVP1((n, e), s); if RSAVP1 returns "signature
representative out of range", output "INVALID" and stop.
3. mgf_domain_separator = 0x01
Goldberg, et al. Expires 10 February 2023 [Page 11]
Internet-Draft VRF August 2022
4. EM' = MGF1(suite_string || mgf_domain_separator || MGF_salt ||
alpha_string, k - 1)
5. m' = OS2IP(EM')
6. If m and m' are equal, output ("VALID",
RSAFDHVRF_proof_to_hash(pi_string)); else output "INVALID".
4.4. RSA-FDH-VRF Ciphersuites
This document defines RSA-FDH-VRF-SHA256 as follows:
* suite_string = 0x01
* The hash function Hash is SHA-256 as specified in [RFC6234], with
hLen = 32
* MGF_salt = I2OSP(k, 4) || I2OSP(n, k)
This document defines RSA-FDH-VRF-SHA384 as follows:
* suite_string = 0x02
* The hash function Hash is SHA-384 as specified in [RFC6234], with
hLen = 48
* MGF_salt = I2OSP(k, 4) || I2OSP(n, k)
This document defines RSA-FDH-VRF-SHA512 as follows:
* suite_string = 0x03
* The hash function Hash is SHA-512 as specified in [RFC6234], with
hLen = 64
* MGF_salt = I2OSP(k, 4) || I2OSP(n, k)
5. Elliptic Curve VRF (ECVRF)
The Elliptic Curve Verifiable Random Function (ECVRF) is a VRF that,
for suitable parameter choices, satisfies the "full uniqueness",
"trusted collision resistance", and "full pseudorandomness
properties" defined in Section 3. If validate_key parameter given to
the ECVRF_verify is TRUE, then the ECVRF additionally satisfies "full
collision resistance" and "unpredictability under malicious key
generation". See Section 7 for further discussion. Formal security
proofs are in [PWHVNRG17].
Goldberg, et al. Expires 10 February 2023 [Page 12]
Internet-Draft VRF August 2022
Notation used:
Elliptic curve operations are written in additive notation, with
P+Q denoting point addition and x*P denoting scalar multiplication
of a point P by a scalar x
x^y - x raised to the power y
x*y - x multiplied by y
s || t - concatenation of octet strings s and t
0xMN (where M and N are hexadecimal digits) - a single octet with
value M*16+N; equivalently, int_to_string(M*16+N, 1), where
int_to_string is as defined below.
Fixed options (specified in Section 5.5):
F - finite field
fLen - length, in octets, of an element in F encoded as an octet
string
E - elliptic curve (EC) defined over F
ptLen - length, in octets, of a point on E encoded as an octet
string
G - subgroup of E of large prime order
q - prime order of group G
qLen - length of q in octets, i.e., smallest integer such that
2^(8qLen)>q
cLen - length, in octets, of a challenge value used by the VRF
(note that in the typical case, cLen is qLen/2 or close to it)
cofactor - number of points on E divided by q
B - generator of group G
Hash - cryptographic hash function
hLen - output length in octets of Hash (hLen must be at least
cLen; in the typical case, it is at least qLen)
Goldberg, et al. Expires 10 February 2023 [Page 13]
Internet-Draft VRF August 2022
ECVRF_encode_to_curve - a function that hashes strings to points
on E.
ECVRF_nonce_generation - a function that derives a pseudorandom
nonce from SK and the input as part of ECVRF proving.
suite_string - an octet string specifying the ECVRF ciphersuite,
which determines the above options as well as type conversions and
parameter generation
Type conversions (specified in Section 5.5):
int_to_string(a, len) - conversion of nonnegative integer a to
octet string of length len
string_to_int(a_string) - conversion of an octet string a_string
to a nonnegative integer
point_to_string - conversion of a point on E to an ptLen-octet
string
string_to_point - conversion of an ptLen-octet string to a point
on E. string_to_point returns INVALID if the octet string does
not convert to a valid EC point on the curve E.
Note that with certain software libraries (for big integer and
elliptic curve arithmetic), the int_to_string and point_to_string
conversions are not needed, when the libraries encode integers and
EC points in the same way as required by the ciphersuites. For
example, in some implementations, EC point operations will take
octet strings as inputs and produce octet strings as outputs,
without introducing a separate elliptic curve point type.
Parameters used (the generation of these parameters is specified in
Section 5.5):
SK - VRF secret key
x - VRF secret scalar, an integer. Note: depending on the
ciphersuite used, the VRF secret scalar may be equal to SK; else,
it is derived from SK
Y = x*B - VRF public key, an point on E
PK_string = point_to_string(Y) - VRF public key represented as an
octet string
encode_to_curve_salt - a public value used as a hash function salt
Goldberg, et al. Expires 10 February 2023 [Page 14]
Internet-Draft VRF August 2022
5.1. ECVRF Proving
ECVRF_prove(SK, alpha_string[, encode_to_curve_salt])
Input:
SK - VRF secret key
alpha_string - input alpha, an octet string
Optional input:
encode_to_curve_salt - a public salt value, an octet string; this
input is not used when encode_to_curve_salt is specified as part
of the ciphersuite
Output:
pi_string - VRF proof, octet string of length ptLen+cLen+qLen
Steps:
1. Use SK to derive the VRF secret scalar x and the VRF public key Y
= x*B
(this derivation depends on the ciphersuite, as per Section 5.5;
these values can be cached, for example, after key generation,
and need not be rederived each time)
2. H = ECVRF_encode_to_curve(encode_to_curve_salt, alpha_string)
(see Section 5.4.1)
3. h_string = point_to_string(H)
4. Gamma = x*H
5. k = ECVRF_nonce_generation(SK, h_string) (see Section 5.4.2)
6. c = ECVRF_challenge_generation(Y, H, Gamma, k*B, k*H) (see
Section 5.4.3)
7. s = (k + c*x) mod q
8. pi_string = point_to_string(Gamma) || int_to_string(c, cLen) ||
int_to_string(s, qLen)
9. Output pi_string
Goldberg, et al. Expires 10 February 2023 [Page 15]
Internet-Draft VRF August 2022
5.2. ECVRF Proof to Hash
ECVRF_proof_to_hash(pi_string)
Input:
pi_string - VRF proof, octet string of length ptLen+cLen+qLen
Output:
"INVALID", or
beta_string - VRF hash output, octet string of length hLen
Important note:
ECVRF_proof_to_hash should be run only on pi_string that is known
to have been produced by ECVRF_prove, or from within ECVRF_verify
as specified in Section 5.3.
Steps:
1. D = ECVRF_decode_proof(pi_string) (see Section 5.4.4)
2. If D is "INVALID", output "INVALID" and stop
3. (Gamma, c, s) = D
4. proof_to_hash_domain_separator_front = 0x03
5. proof_to_hash_domain_separator_back = 0x00
6. beta_string = Hash(suite_string ||
proof_to_hash_domain_separator_front || point_to_string(cofactor
* Gamma) || proof_to_hash_domain_separator_back)
7. Output beta_string
5.3. ECVRF Verifying
ECVRF_verify(PK_string, alpha_string, pi_string[,
encode_to_curve_salt, validate_key])
Input:
PK_string - public key, an octet string
alpha_string - VRF input, octet string
Goldberg, et al. Expires 10 February 2023 [Page 16]
Internet-Draft VRF August 2022
pi_string - VRF proof, octet string of length ptLen+cLen+qLen
Optional input:
encode_to_curve_salt - a public salt value, an octet string; this
input is not used when encode_to_curve_salt is specified as part
of the ciphersuite
validate_key - a boolean. An implementation MAY support only the
option of validate_key = TRUE, or only the option of validate_key
= FALSE, in which case this input is not needed. If an
implementation supports only one option, it MUST specify which
option is supports.
Output:
("VALID", beta_string), where beta_string is the VRF hash output,
octet string of length hLen; or
"INVALID"
Steps:
1. Y = string_to_point(PK_string)
2. If Y is "INVALID", output "INVALID" and stop
3. If validate_key, run ECVRF_validate_key(Y) (Section 5.4.5); if
it outputs "INVALID", output "INVALID" and stop
4. D = ECVRF_decode_proof(pi_string) (see Section 5.4.4)
5. If D is "INVALID", output "INVALID" and stop
6. (Gamma, c, s) = D
7. H = ECVRF_encode_to_curve(encode_to_curve_salt, alpha_string)
(see Section 5.4.1)
8. U = s*B - c*Y
9. V = s*H - c*Gamma
10. c' = ECVRF_challenge_generation(Y, H, Gamma, U, V) (see
Section 5.4.3)
11. If c and c' are equal, output ("VALID",
ECVRF_proof_to_hash(pi_string)); else output "INVALID"
Goldberg, et al. Expires 10 February 2023 [Page 17]
Internet-Draft VRF August 2022
Note that the first three steps need to be performed only once for a
given public key.
5.4. ECVRF Auxiliary Functions
5.4.1. ECVRF Encode to Curve
The ECVRF_encode_to_curve algorithm takes a public salt (see
Section 7.9) and the VRF input alpha and converts it to H, an EC
point in G. This algorithm is the only place the VRF input alpha is
used for proving and verifying. See Section 7.7 for further
discussion.
This section specifies a number of such algorithms, which are not
compatible with each other and are intended to use with various
ciphersuites specified in Section 5.5.
Input:
encode_to_curve_salt - public salt value, an octet string
alpha_string - value to be hashed, an octet string
Output:
H - hashed value, a point in G
5.4.1.1. ECVRF_encode_to_curve_try_and_increment
The following
ECVRF_encode_to_curve_try_and_increment(encode_to_curve_salt,
alpha_string) algorithm implements ECVRF_encode_to_curve in a simple
and generic way that works for any elliptic curve. To use this
algorithm, hLen MUST be at least fLen.
The running time of this algorithm depends on alpha_string. For the
ciphersuites specified in Section 5.5, this algorithm is expected to
find a valid curve point after approximately two attempts (i.e., when
ctr=1) on average.
However, because the running time of algorithm depends on
alpha_string, this algorithm SHOULD be avoided in applications where
it is important that the VRF input alpha remain secret.