-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbridge_ranking_simple.py
118 lines (106 loc) · 3.87 KB
/
bridge_ranking_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import sys
import psycopg2
import numpy as np
import scipy.stats as stats
import pyNBI.bridge as pybridge
import pyNBI.traffic as pytraffic
import pyDUE.generate_graph as g
import pyDUE.ue_solver as ue
from pyNataf.nataf import natafcurve
from pyNBI.risk import social_cost, bridge_cost
from cvxopt import matrix, mul
import itertools
import time
import datetime
theta = matrix([0.0, 0.0, 0.0, 0.15])
delaytype = 'Polynomial'
bridge_db = np.array(
[[' 1', 1, 1, 50., 10., 5, 6, 7, 10.0, [(1, 2, 1)]],
[' 2', 1, 1, 50., 10., 5, 6, 7, 1.0, [(1, 3, 1)]],
[' 3', 1, 1, 50., 10., 5, 6, 7, 1.0, [(2, 4, 1)]],
[' 4', 1, 1, 50., 10., 5, 6, 7, 10.0, [(3, 4, 1)]]], dtype=object)
pmatrix = np.load('pmatrix.npy')
graph0 = g.braess_paradox()
nlink = len(graph0.links)
# capacity drop
cap_drop_array = np.ones(np.asarray(bridge_db, dtype=object).shape[0])*0.1
# time of interest
t = 50
# get current cs distribution
cs_dist = pytraffic.condition_distribution(t, bridge_db, pmatrix)
# number of smps
nsmp = int(1e5)
# initial capacity without failed bridges
all_capacity = np.zeros(nlink)
for link, link_indx in graph0.indlinks.iteritems():
all_capacity[link_indx] = graph0.links[link].capacity
# initial delay
res0 = ue.solver_fw(graph0, full=True)
delay0 = res0[1][0,0]
length_vector = np.zeros(len(graph0.links.keys()))
for link_key, link_indx in graph0.indlinks.iteritems():
length_vector[link_indx] = graph0.links[link_key].length
distance0 = (res0[0].T * matrix(length_vector))[0,0]
cost0 = social_cost(delay0, distance0, t)
res_bench = ue.solver(graph0)
# create bookkeeping dict
bookkeeping = {}
# correlation
correlation = None
#correlation = np.array([[1.,0.5, 0., 0.], [0.5, 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]])
#correlation = np.array([[1.,0.9, 0., 0.], [0.9, 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]])
# nataf
nataf=None
#popt = np.load('nataf_popt.npy')
#def nataf(x):
#return natafcurve(x,*popt)
def loop_over_bridges(bridge_indx):
indx, smp = pytraffic.delay_samples(nsmp, graph0, cost0, all_capacity, t, bridge_indx,
bridge_db, cs_dist, cap_drop_array, theta, delaytype,
correlation=correlation, nataf=nataf,corrcoef=0., bookkeeping=bookkeeping)
return indx, smp
if __name__ == '__main__':
# calculation
start_delta_time = time.time()
print 'CALC:'
res = map(loop_over_bridges, np.arange(bridge_db.shape[0]))
delta_time = time.time() - start_delta_time
print 'DONE',str(datetime.timedelta(seconds=delta_time))
bridge_indx = np.asarray(res, dtype=object)[:,0].astype('int')
bridge_risk_data = np.vstack(np.asarray(res, dtype=object)[:,1]).T
# postprocessing
import matplotlib.pyplot as plt
plt.rc('font', family='serif', size=12)
plt.rc('text', usetex=True)
fig, ax = plt.subplots(1,1)
ax.boxplot(bridge_risk_data, showmeans=True)
plt.xlabel('Bridge index')
plt.ylabel('Risk of bridge failure (time unit)')
# save data
import shelve
dir_name = os.path.join(os.path.abspath('./'), 'figures',
'ranking_simple '+str(datetime.datetime.now()).replace(':', '-'))
if not os.path.exists(dir_name):
os.makedirs(dir_name)
plt.savefig(os.path.join(dir_name,'bridge_ranking_simple.eps'))
filename=os.path.join(dir_name,'data_shelve.out')
my_shelf = shelve.open(filename,'n') # 'n' for new
for key in dir():
try:
my_shelf[key] = globals()[key]
#except TypeError:
except:
#
# __builtins__, my_shelf, and imported modules can not be shelved.
#
if not key.startswith("_"):
print('ERROR shelving: {0}'.format(key))
my_shelf.close()
# to restore workspace, uncommon the follows
#my_shelf = shelve.open(filename)
#for key in my_shelf:
#globals()[key]=my_shelf[key]
#my_shelf.close()
plt.ion()
plt.show()