-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLife_Cycle_FRP.py
executable file
·703 lines (599 loc) · 35.5 KB
/
Life_Cycle_FRP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# DBN with LWS v0_1 (with definitive condition state)
import os
import numpy as np
import scipy.stats as stats
import scipy.special as spec
from scipy.interpolate import interp1d
from constants import *
from evidence import *
from corrosion import *
from resistance import *
from functions import *
from pyre.distributions import *
import scipy.io
import time
import datetime
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_anchor', 'no_evidence_shear')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_anchor', 'evidence_condition_state_shear')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_anchor', 'no_evidence')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_anchor', 'evidence_condition_state')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_bond', 'no_evidence_shear')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_bond', 'evidence_condition_state_shear')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_bond', 'no_evidence')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_bond', 'evidence_condition_state')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_anchor_degrade', 'no_evidence_shear')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_anchor_degrade', 'evidence_condition_state_shear')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_anchor_degrade', 'no_evidence')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_anchor_degrade', 'evidence_condition_state')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_bond_degrade', 'no_evidence_shear')
DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_bond_degrade', 'evidence_condition_state_shear')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_bond_degrade', 'no_evidence')
#DATAFILE_PATH = os.path.join(os.path.abspath('./'), 'data', 'frp_U_bond_degrade', 'evidence_condition_state')
def main():
# FRP deterioration function
mat = scipy.io.loadmat( os.path.join(os.path.abspath('./'), 'matlab_data', 'frp_degradation.mat') )
tdegrade = mat['timeEnvYR'].flatten()
sfrpdegrade = mat['degradeFrp2Env'].flatten()
frp_interp1d = interp1d(tdegrade, sfrpdegrade, bounds_error=False, fill_value=sfrpdegrade[-1])
frp_degrade = lambda t: frp_interp1d(t)
# bonding deterioratio function
bond_degrade = lambda t: BOND_P1*t**4 + BOND_P2*t**3 + BOND_P3*t**2 + BOND_P4*t + BOND_P5
# Structural age
service_time = np.arange(START_AGE+TIME_INTERVAL,END_AGE+TIME_INTERVAL,TIME_INTERVAL)
weight_sum = 0
n_iter = 1
seed_indx = np.arange(1,55,2)
chloride_sums = np.zeros(1)
corrosion_state_sums = np.zeros(1)
corrosion_rate_sums = np.zeros(1)
mean_corrosion_rate_sums = np.zeros(1)
residual_diameter_sums = np.zeros(1)
radial_pressure_sums = np.zeros(1)
crack_prob_sums = np.zeros(1)
ds_crack_sums = np.zeros(1)
crack_width_sums = np.zeros(1)
diffusion_crack_sums = np.zeros(1)
rc_flexure_sums = np.zeros(1)
rc_shear_sums = np.zeros(1)
chloride_data = np.array([]).reshape(service_time.size,0)
corrosion_state_data = np.array([]).reshape(service_time.size,0)
corrosion_rate_data = np.array([]).reshape(service_time.size,0)
mean_corrosion_rate_data = np.array([]).reshape(service_time.size,0)
residual_diameter_data = np.array([]).reshape(service_time.size,0)
radial_pressure_data = np.array([]).reshape(service_time.size,0)
crack_initiation_data = np.array([]).reshape(service_time.size,0)
crack_width_data = np.array([]).reshape(service_time.size,0)
diffusion_crack_data = np.array([]).reshape(service_time.size,0)
rc_flexure_data = np.array([]).reshape(service_time.size, 0)
rc_shear_data = np.array([]).reshape(service_time.size, 0)
likelihood_weighting_data = np.array([])
while weight_sum <= SUM_WEIGHT and n_iter<=MAX_ITER_LW:
## seeds for sample generation
DIFFUSION_REF_SEED = seed_indx[0]**2
CONCRETE_COVER_SEED = seed_indx[1]**2
SURFACE_CL_SEED = seed_indx[2]**2
CRITICAL_CL_SEED = seed_indx[3]**2
CONCRETE_RESISTANCE_SEED = seed_indx[4]**2
CORROSION_RATE_SEED = seed_indx[5]**2
CONCRETE_STRENGTH_SEED = seed_indx[6]**2
CONCRETE_MODULUS_SEED = seed_indx[7]**2
CONCRETE_TENSION_SEED = seed_indx[8]**2
POROUS_LAYER_SEED = seed_indx[9]**2
CRACK_WIDTH_SEED = seed_indx[10]**2
CRACK_DIFFUSION_SEED = seed_indx[11]**2
# flexural resistance
ME_FLEX_RC_SEED = seed_indx[12]**2
FSY_SEED = seed_indx[13]**2
BEAM_WIDTH_SEED = seed_indx[14]**2
BEAM_DEPTH_SEED = seed_indx[15]**2
FLANGE_WIDTH_SEED = seed_indx[16]**2
FLANGE_DEPTH_SEED = seed_indx[17]**2
# shear resistance
ME_SHEAR_RC_SEED = seed_indx[18]**2
SHEAR_DEPTH_SEED = seed_indx[19]**2
FSYV_SEED = seed_indx[20]**2
SHEAR_INTERVAL_SEED = seed_indx[21]**2
# frp-related
ME_FLEX_FRP_SEED = seed_indx[22]**2
ME_SHEAR_FRP_SEED = seed_indx[23]**2
EFRP_SEED = seed_indx[23]**2
FFRP_SEED = seed_indx[24]**2
EFRPV_SEED = seed_indx[25]**2
FFRPV_SEED = seed_indx[26]**2
seed_indx = seed_indx + 55
# history of interest
chloride_history = np.zeros((service_time.size, N_SMP))
corrosion_state_history = np.zeros((service_time.size, N_SMP))
corrosion_rate_history = np.zeros((service_time.size, N_SMP))
mean_corrosion_rate_history = np.zeros((service_time.size, N_SMP))
residual_diameter_history = np.zeros((service_time.size, N_SMP))
radial_pressure_history = np.zeros((service_time.size, N_SMP))
crack_initiation_history = np.zeros((service_time.size, N_SMP))
ds_crack_history = np.zeros((service_time.size, N_SMP))
crack_width_history = np.zeros((service_time.size, N_SMP))
diffusion_crack_history = np.zeros((service_time.size, N_SMP))
rc_flexure_history = np.zeros((service_time.size, N_SMP))
rc_shear_history = np.zeros((service_time.size, N_SMP))
#frp_flexure_history = np.zeros((service_time.size, N_SMP))
#frp_shear_history = np.zeros((service_time.size, N_SMP))
# initial likelihood weighting
likelihood_weighting = np.ones(N_SMP)
## initial samples
# reference diffusion coefficient
ref_diffusion_coefficient = refDiffusionCoefVariable()
np.random.seed(DIFFUSION_REF_SEED)
Drcm_smp = ref_diffusion_coefficient.rv.rvs(size=N_SMP) # [mm^2/year]
# concrete cover
concrete_cover = concCoverVariable()
np.random.seed(CONCRETE_COVER_SEED)
dc_smp = concrete_cover.rv.rvs(size = N_SMP) # [mm]
# surface chloride
surface_chloride = surfaceClVariable()
np.random.seed(SURFACE_CL_SEED)
Cs_smp = surface_chloride.rv.rvs(size = N_SMP) # [kg/m3]
# critical chloride
critical_chloride = criticalClVariable()
np.random.seed(CRITICAL_CL_SEED)
Ccr_smp = critical_chloride.rv.rvs(size = N_SMP)
# concrete strength
compressive_strength = concStrengthVariable()
np.random.seed(CONCRETE_STRENGTH_SEED)
fc_smp = compressive_strength.rv.rvs(size = N_SMP)
# effective concrete elastic modulus
elastic_modulus = concEffEcVariable()
np.random.seed(CONCRETE_MODULUS_SEED)
Ec_smp = elastic_modulus.rv.rvs(size = N_SMP)
# concrete tensile strength
tensile_strength = concTensileVariable()
np.random.seed(CONCRETE_TENSION_SEED)
ft_smp = tensile_strength.rv.rvs(size = N_SMP)
# critical radial pressure
pcr_smp = criticalPressure(dc_smp, ft_smp)
# porous layer thickness: delta0
porous_zone = porousLayerThickVariable()
np.random.seed(POROUS_LAYER_SEED)
delta0_smp = porous_zone.rv.rvs(size = N_SMP)
# model error of Rc
log_rc_var = modelErrorRcVariable()
np.random.seed(CONCRETE_RESISTANCE_SEED)
log_rc_var_smp = log_rc_var.rv.rvs(size=N_SMP)
# model error of icorr
log_icorr_var = modelErrorIcorrVariable()
np.random.seed(CORROSION_RATE_SEED)
log_icorr_var_smp = log_icorr_var.rv.rvs(size=N_SMP) - np.log(1.08)
# model error of CRACK_K
crk_var = modelErrorCrackVariable()
np.random.seed(CRACK_WIDTH_SEED)
crk_var_smp = crk_var.rv.rvs(size=N_SMP)
# model error of fw
Dck_var = modelErrorDiffusionVariable()
np.random.seed(CRACK_DIFFUSION_SEED)
Dck_var_smp = Dck_var.rv.rvs(size=N_SMP)
# model error of flexural strength of RC beams
ME_flex = modelErrorRCFlexVariable()
np.random.seed(ME_FLEX_RC_SEED)
ME_flex_smp = ME_flex.rv.rvs(size=N_SMP)
# yielding strength of steel
fy_steel = steelYieldingVariable()
np.random.seed(FSY_SEED)
fy_smp = fy_steel.rv.rvs(size=N_SMP)
# beam width and depth
beam_width = beamWidthVariable()
np.random.seed(BEAM_WIDTH_SEED)
b_smp = beam_width.rv.rvs(size=N_SMP)
beam_depth = beamDepthVariable()
np.random.seed(BEAM_DEPTH_SEED)
d_smp = beam_depth.rv.rvs(size=N_SMP)
# flange width and depth
flange_width = flangeWidthVariable()
np.random.seed(FLANGE_WIDTH_SEED)
bf_smp = flange_width.rv.rvs(size=N_SMP)
flange_depth = flangeDepthVariable()
np.random.seed(FLANGE_DEPTH_SEED)
hf_smp = flange_depth.rv.rvs(size=N_SMP)
# model error of shear strength of RC beams
ME_shear = modelErrorRCShearVariable()
np.random.seed(ME_SHEAR_RC_SEED)
ME_shear_smp = ME_shear.rv.rvs(size=N_SMP)
# yielding strength of shear reinforcement
fyv_steel = shearYieldingVariable()
np.random.seed(FSYV_SEED)
fyv_smp = fyv_steel.rv.rvs(size=N_SMP)
# shear depth
dv = shearDepthVariable()
np.random.seed(SHEAR_DEPTH_SEED)
dv_smp = dv.rv.rvs(size=N_SMP)
# shear interval
sv = shearIntervalVariable()
np.random.seed(SHEAR_INTERVAL_SEED)
sv_smp = sv.rv.rvs(size=N_SMP)
## temperary nodes
# temperature
temp = tempVariable()
# volume ratio: gamma
volume_ratio = volRatioVariable()
## FRP-related random variables
# model error of flexural strengthening
ME_flex_frp = modelErrorFRPFlexVariable()
np.random.seed(ME_FLEX_FRP_SEED)
ME_flex_frp_smp = ME_flex_frp.rv.rvs(size=N_SMP)
# model error of shear strengthening
ME_shear_frp = modelErrorFRPShearVariable()
np.random.seed(ME_SHEAR_FRP_SEED)
ME_shear_frp_smp = ME_shear_frp.rv.rvs(size=N_SMP)
# material properties
ecu_smp = ECU_MEAN * np.ones(N_SMP)
Es_smp = ES_MEAN * np.ones(N_SMP)
fyc_smp = FYC_MEAN * np.ones(N_SMP)
# flexural strengthening
Efrp = EfrpVariable()
np.random.seed(EFRP_SEED)
Efrp_smp = Efrp.rv.rvs(size=N_SMP)
ffrp = ffrpVariable()
np.random.seed(FFRP_SEED)
ffrp_smp = ffrp.rv.rvs(size=N_SMP)
tfrp_smp = TFRP_MEAN * np.ones(N_SMP)
bfrp_smp = BFRP_MEAN * np.ones(N_SMP)
if EM_FLEX_FORM.lower() == 'ic':
fanchor_smp = np.zeros(N_SMP)
else:
fanchor_smp = FANCHOR_MEAN * np.ones(N_SMP)
eini_smp = np.zeros(N_SMP)
# shear strengthening
Efrpv = EfrpShearVariable()
np.random.seed(EFRPV_SEED)
Efrpv_smp = Efrpv.rv.rvs(size=N_SMP)
ffrpv = ffrpShearVariable()
np.random.seed(FFRPV_SEED)
ffrpv_smp = ffrpv.rv.rvs(size=N_SMP)
tfrpv_smp = TFRPV_MEAN * np.ones(N_SMP)
# geometric properties
h_smp = d_smp + BEAM_HEIGHT_MEAN - BEAM_DEPTH_MEAN
a_smp = PLATE2SUPPORT_MEAN * np.ones(N_SMP)
ss_smp = SHEAR_SPAN_MEAN * np.ones(N_SMP)
l_smp = SPAN_MEAN * np.ones(N_SMP)
dsc_smp = DSC_MEAN * np.ones(N_SMP)
Asc_smp = np.pi/4*dsc_smp**2 * DSC_NO
dfrp_smp = np.copy(h_smp)
dfrpt_smp = hf_smp
wfrpv_smp = WFRPV_MEAN * np.ones(N_SMP)
sfrpv_smp = SFRPV_MEAN * np.ones(N_SMP)
frpIncline_smp = FRP_INCLINE_MEAN * np.ones(N_SMP) * np.pi/180.
## start the process
Cl_prev = np.zeros(N_SMP)
Cl_prev2 = np.zeros(N_SMP)
isIni_prev = np.zeros(N_SMP).astype(bool)
isIni_prev2 = np.zeros(N_SMP).astype(bool)
iniYr_smp = np.ones(N_SMP) * (END_AGE*2)
iniYr_smp2 = np.ones(N_SMP) * (END_AGE*2)
icorr_prev = np.zeros(N_SMP)
icorr_prev2 = np.zeros(N_SMP)
ds_smp = np.ones(N_SMP) * DS_REGION1_MEAN
ds_smp2 = np.ones(N_SMP) * DS_REGION2_MEAN
ds_prev = np.ones(N_SMP) * DS_REGION1_MEAN
ds_prev2 = np.ones(N_SMP) * DS_REGION2_MEAN
pcor_prev = np.ones(N_SMP)
isCrack_prev = np.zeros(N_SMP).astype(bool)
ds_crack_smp = np.zeros(N_SMP)
wc_prev = np.zeros(N_SMP)
fw_prev = np.ones(N_SMP)
gamma_pre = np.zeros(N_SMP)
# temperature smps
#np.random.seed(int(age)*n_iter)
temp_smp = temp.rv.rvs(size=N_SMP)
#np.random.seed(int(age)*n_iter)
gamma_smp = volume_ratio.rv.rvs(size = N_SMP)
#gamma_smp = np.maximum(gamma_pre, gamma_smp)
#gamma_pre = gamma_smp
for age in service_time:
## temperature smps
#np.random.seed(int(age)*n_iter)
#temp_smp = temp.rv.rvs(size=N_SMP)
# get Cl smps
D_smp = np.copy(Drcm_smp)
# region 1
D_smp[isCrack_prev] = fw_prev[isCrack_prev] * Drcm_smp[isCrack_prev]
Cl_smp = chlorideContent(age, temp_smp, D_smp, dc_smp, Cs_smp)
Cl_smp = np.maximum(Cl_smp, Cl_prev)
chloride_history[service_time==age, :] = Cl_smp
Cl_prev = Cl_smp
# region 2
D_smp2 = np.copy(Drcm_smp)
Cl_smp2 = chlorideContent(age, temp_smp, D_smp2, dc_smp+DISTANCE_12, Cs_smp)
Cl_smp2 = np.maximum(Cl_smp2, Cl_prev2)
Cl_prev2 = Cl_smp2
# get corrosion state
# region 1
isIni_smp = Cl_smp>=Ccr_smp
isIni_smp = np.logical_or(isIni_smp, isIni_prev)
corrosion_state_history[service_time==age, :] = isIni_smp
# check evidence
if not np.isnan(evidence_dict['iniStat'][service_time==age]): # with evidence
isIni_smp_priori = np.copy(isIni_smp)
if evidence_dict['iniStat'][service_time==age].astype(bool):
isIni_smp = np.ones(N_SMP, dtype=bool)
condition_prob = isIni_smp_priori
else:
isIni_smp = np.zeros(N_SMP, dtype=bool)
condition_prob = np.logical_not(isIni_smp_priori)
likelihood_weighting = likelihood_weighting * condition_prob
elif not np.isnan(evidence_dict['halfCell'][service_time==age]):
half_cell_evidence = evidence_dict['halfCell'][service_time==age]
condition_prob = halfcellLikelihood(isIni_smp, half_cell_evidence)
likelihood_weighting = likelihood_weighting * condition_prob
# region 2
isIni_smp2 = Cl_smp2>=Ccr_smp
isIni_smp2 = np.logical_or(isIni_smp2, isIni_prev2)
# calculate tcorr
# region 1
iniYr_smp[np.logical_and(np.logical_not(isIni_prev), isIni_smp)] = age
tcorr_smp = age - iniYr_smp + TIME_INTERVAL
tcorr_smp[tcorr_smp<0] = 0.0
isIni_prev = isIni_smp
# region 2
iniYr_smp2[np.logical_and(np.logical_not(isIni_prev2), isIni_smp2)] = age
tcorr_smp2 = age - iniYr_smp2 + TIME_INTERVAL
tcorr_smp2[tcorr_smp2<0] = 0.0
isIni_prev2 = isIni_smp2
# get Rc smp
# region 1
log_smp = logRcSmp(Cl_smp, log_rc_var_smp)
Rc_smp = np.exp(log_smp)
# region 2
log_smp2 = logRcSmp(Cl_smp2, log_rc_var_smp)
Rc_smp2 = np.exp(log_smp2)
# get corrosion current density (corrosion rate) smps
# region 1
log_smp = logIcorrSmp(Cl_smp, temp_smp, Rc_smp, tcorr_smp, log_icorr_var_smp)
icorr_smp = np.exp(log_smp)
icorr_smp[tcorr_smp==0] = 0
corrosion_rate_history[service_time==age, :] = icorr_smp
if not np.isnan(evidence_dict['icorr'][service_time==age]):
icorr_evidence = evidence_dict['icorr'][service_time==age]
condition_prob = icorrLikelihood(icorr_smp, icorr_evidence)
likelihood_weighting = likelihood_weighting * condition_prob
#region 2
log_smp2 = logIcorrSmp(Cl_smp2, temp_smp, Rc_smp2, tcorr_smp2, log_icorr_var_smp)
icorr_smp2 = np.exp(log_smp2)
icorr_smp2[tcorr_smp2==0] = 0
# compute imean
# region 1
#imean_smp = 0.5*(icorr_prev + icorr_smp)
imean_smp = icorr_smp
icorr_prev = icorr_smp
mean_corrosion_rate_history[service_time==age, :] = imean_smp
# region 2
imean_smp2 = icorr_smp2
# get mass loss and residual diameter
# region 1
mass_loss_smp, section_loss_smp, ds_smp = corrosionLossSmp(ds_smp, imean_smp)
ds_smp = np.minimum(ds_prev, ds_smp)
residual_diameter_history[service_time==age, :] = ds_smp
ds_prev = ds_smp
# region 2
mass_loss_smp2, section_loss_smp2, ds_smp2 = corrosionLossSmp(ds_smp2, imean_smp2)
ds_smp2 = np.minimum(ds_prev2, ds_smp2)
ds_prev2 = ds_smp2
# get radial pressure
pcor_smp = radialPressure(mass_loss_smp, Ec_smp, gamma_smp, delta0_smp, dc_smp)
pcor_smp[pcor_smp<pcor_prev] = pcor_prev[pcor_smp<pcor_prev]
radial_pressure_history[service_time==age, :] = pcor_smp
pcor_prev = pcor_smp
# get crack state and ds at crack
isCrack_smp = pcor_smp>pcr_smp
isCrack_smp = np.logical_or(isCrack_smp, isCrack_prev)
crack_initiation_history[service_time==age, :] = isCrack_smp
# check evidence
if not np.isnan(evidence_dict['crkStat'][service_time==age]): # with evidence
isCrack_smp_priori = np.copy(isCrack_smp)
if evidence_dict['crkStat'][service_time==age].astype(bool):
isCrack_smp = np.ones(N_SMP, dtype=bool)
condition_prob = isCrack_smp_priori
else:
isCrack_smp = np.zeros(N_SMP, dtype=bool)
condition_prob = np.logical_not(isCrack_smp_priori)
likelihood_weighting = likelihood_weighting * condition_prob
ds_crack_smp[np.logical_and(np.logical_not(isCrack_prev), isCrack_smp)] = ds_smp[np.logical_and(np.logical_not(isCrack_prev), isCrack_smp)]
ds_crack_history[service_time==age, :] = ds_crack_smp
isCrack_prev = isCrack_smp
# get crack width
wc_smp = crackWidthSmp(ds_crack_smp, ds_smp, crk_var_smp)
wc_smp = np.maximum(wc_smp, wc_prev)
crack_width_history[service_time == age, :] = wc_smp
wc_prev = wc_smp
## check evidence
if not np.isnan(evidence_dict['conditionState'][service_time==age]): # with evidence
crk_std = np.maximum(CRACK_MEASUREMENT_ABSERROR, wc_smp*CRACK_MEASUREMENT_RELERROR)
#deltaAsloss = np.pi/4*ds_crack_smp**2-np.pi/4*ds_smp**2
#deltaAsloss = np.maximum(deltaAsloss, 0)
#crk_std = wc_smp * 0.4*np.exp(0.5*CRACK_GAMMA1+0.5*CRACK_GAMMA2*(deltaAsloss))
#crk_std = np.maximum(CRACK_MEASUREMENT_ABSERROR, crk_std)
if evidence_dict['conditionState'][service_time==age] == 1:
wc_smp_to_cdf_indx = (CS1_UB - wc_smp) / crk_std
condition_prob = stats.norm.cdf(wc_smp_to_cdf_indx)
elif evidence_dict['conditionState'][service_time==age] == 2:
wc_smp_to_cdf_indx1 = (CS2_LB - wc_smp) / crk_std
wc_smp_to_cdf_indx2 = (CS2_UB - wc_smp) / crk_std
condition_prob = stats.norm.cdf(wc_smp_to_cdf_indx2) - stats.norm.cdf(wc_smp_to_cdf_indx1)
elif evidence_dict['conditionState'][service_time==age] == 3:
wc_smp_to_cdf_indx1 = (CS3_LB - wc_smp) / crk_std
wc_smp_to_cdf_indx2 = (CS3_UB - wc_smp) / crk_std
condition_prob = stats.norm.cdf(wc_smp_to_cdf_indx2) - stats.norm.cdf(wc_smp_to_cdf_indx1)
else: # cnndition state 4
wc_smp_to_cdf_indx = (CS4_LB - wc_smp) / crk_std
condition_prob = 1 - stats.norm.cdf(wc_smp_to_cdf_indx)
likelihood_weighting = likelihood_weighting * condition_prob
# get diffusion coefficient of cracked concrete
fw_smp = diffusionRatioSmp(Dck_var_smp, wc_smp)
fw_smp[np.logical_not(isCrack_smp)] = 1.0
fw_smp = np.maximum(fw_prev, fw_smp)
diffusion_crack_history[service_time == age, :] = fw_smp
fw_prev = fw_smp
# get resistance
# name, ME_flex, fc, fy, Ast, b, d, bf, hf
# flexural
Ast_smp = residualSteelArea(section_loss_smp, section_loss_smp2)
ME_dict, material_dict, geo_dict = assembleBeamDict(ME_flex_smp, ME_shear_smp,
fc_smp, LAMBDA_FC, fy_smp, fyv_smp,
Ast_smp, Ast_smp, b_smp, d_smp, bf_smp, hf_smp, dv_smp, sv_smp)
rcBeam = RCBeam('rc_beam', ME_dict, material_dict, geo_dict)
mu_smp = rcBeam.flexCapacity()
rc_flexure_history[service_time == age, :] = mu_smp
# shear
Asvt_smp = residualSteelArea(section_loss_smp, section_loss_smp2)
ME_dict, material_dict, geo_dict = assembleBeamDict(ME_flex_smp, ME_shear_smp,
fc_smp, LAMBDA_FC, fy_smp, fyv_smp,
Asvt_smp, Asvt_smp, b_smp, d_smp, bf_smp, hf_smp, dv_smp, sv_smp)
if age < EM_SHEAR_YR:
rcBeam = RCBeam('rc_beam', ME_dict, material_dict, geo_dict)
vu_smp = rcBeam.shearCapacity()
rc_shear_history[service_time == age, :] = vu_smp
else:
if WFRPV_MEAN/SFRPV_MEAN == 1 and age == EM_SHEAR_YR:
ds_at_str = np.copy(ds_smp)
dsv_smp = ds_at_str
elif WFRPV_MEAN/SFRPV_MEAN == 1 and age > EM_SHEAR_YR:
dsv_smp = ds_at_str
else:
dsv_smp = ds_smp
tAfterStr = age - EM_SHEAR_YR
if EM_SHEAR_FORM.lower() == 'w':
# FRP degradation
ffrpvt_smp = frp_degrade(tAfterStr) * ffrpv_smp
env_smp = np.ones(N_SMP)
else:
# bonding degradation
env_smp = bond_degrade(tAfterStr) * np.ones(N_SMP)
ffrpvt_smp = np.copy(ffrpv_smp)
ME_dict, material_dict, geo_dict = assembleFrpBeamDict(ME_dict, material_dict, geo_dict, ME_flex_frp_smp, ME_shear_frp_smp,
ft_smp, FC_NOM/0.8, ecu_smp, Es_smp, fyc_smp, Efrp_smp, ffrp_smp, tfrp_smp, bfrp_smp, fanchor_smp, eini_smp,
Efrpv_smp, tfrpv_smp, ffrpvt_smp, EM_SHEAR_FORM,
h_smp, a_smp, ss_smp, l_smp, dsc_smp, Asc_smp, dfrp_smp, dfrpt_smp, BAR_TYPE, dsv_smp, wfrpv_smp, sfrpv_smp, frpIncline_smp, env_smp)
frpBeam = FRPBeam('frp_beam', N_SMP, ME_dict, material_dict, geo_dict)
vu_smp = frpBeam.shearCapacity()
rc_shear_history[service_time == age, :] = vu_smp
# calculate sums
sums = weightedSum(chloride_history, likelihood_weighting, axis_data=-1)
chloride_sums = chloride_sums + sums
sums = weightedSum(corrosion_state_history, likelihood_weighting, axis_data=-1)
corrosion_state_sums = corrosion_state_sums + sums
sums = weightedSum(corrosion_rate_history, likelihood_weighting, axis_data=-1)
corrosion_rate_sums = corrosion_rate_sums + sums
sums = weightedSum(mean_corrosion_rate_history, likelihood_weighting, axis_data=-1)
mean_corrosion_rate_sums = mean_corrosion_rate_sums + sums
sums = weightedSum(residual_diameter_history, likelihood_weighting, axis_data=-1)
residual_diameter_sums = residual_diameter_sums + sums
sums = weightedSum(radial_pressure_history, likelihood_weighting, axis_data=-1)
radial_pressure_sums = radial_pressure_sums + sums
sums = weightedSum(crack_initiation_history, likelihood_weighting, axis_data=-1)
crack_prob_sums = crack_prob_sums + sums
sums = weightedSum(ds_crack_history, likelihood_weighting, axis_data=-1)
ds_crack_sums = ds_crack_sums + sums
sums = weightedSum(crack_width_history, likelihood_weighting, axis_data=-1)
crack_width_sums = crack_width_sums + sums
sums = weightedSum(diffusion_crack_history, likelihood_weighting, axis_data=-1)
diffusion_crack_sums = diffusion_crack_sums + sums
sums = weightedSum(rc_flexure_history, likelihood_weighting, axis_data=-1)
rc_flexure_sums = rc_flexure_sums + sums
sums = weightedSum(rc_shear_history, likelihood_weighting, axis_data=-1)
rc_shear_sums = rc_shear_sums + sums
# save data
#save_percentile = np.sum(likelihood_weighting) / SUM_WEIGHT * 100.0
#accept_weight = np.percentile(likelihood_weighting, 100 - save_percentile)
chloride_data = np.hstack((chloride_data, chloride_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
corrosion_state_data = np.hstack((corrosion_state_data, corrosion_state_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
corrosion_rate_data = np.hstack((corrosion_rate_data, corrosion_rate_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
mean_corrosion_rate_data = np.hstack((mean_corrosion_rate_data, mean_corrosion_rate_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
residual_diameter_data = np.hstack((residual_diameter_data, residual_diameter_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
radial_pressure_data = np.hstack((radial_pressure_data, radial_pressure_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
crack_initiation_data = np.hstack((crack_initiation_data, crack_initiation_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
crack_width_data = np.hstack((crack_width_data, crack_width_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
diffusion_crack_data = np.hstack((diffusion_crack_data, diffusion_crack_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
rc_flexure_data = np.hstack((rc_flexure_data, rc_flexure_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
rc_shear_data = np.hstack((rc_shear_data, rc_shear_history[:, likelihood_weighting>=ACCEPT_WEIGHT]))
likelihood_weighting_data = np.hstack((likelihood_weighting_data, likelihood_weighting[likelihood_weighting>=ACCEPT_WEIGHT]))
weight_sum = weight_sum + np.sum(likelihood_weighting)
n_iter += 1
if n_iter > MAX_ITER:
print 'Warning: accumulated weight sum is smaller than ' + str(SUM_WEIGHT)
## save data to binary files
np.save(os.path.join(DATAFILE_PATH,'chloride_history.npy'), chloride_data)
np.save(os.path.join(DATAFILE_PATH,'corrosion_state_history.npy'), corrosion_state_data)
np.save(os.path.join(DATAFILE_PATH,'corrosion_rate_history.npy'), corrosion_rate_data)
np.save(os.path.join(DATAFILE_PATH,'mean_corrosion_rate_history.npy'), mean_corrosion_rate_data)
np.save(os.path.join(DATAFILE_PATH,'residual_diameter_history.npy'), residual_diameter_data)
np.save(os.path.join(DATAFILE_PATH,'radial_pressure_history.npy'), radial_pressure_data)
np.save(os.path.join(DATAFILE_PATH,'crack_initiation_history.npy'), crack_initiation_data)
np.save(os.path.join(DATAFILE_PATH,'crack_width_history.npy'), crack_width_data)
np.save(os.path.join(DATAFILE_PATH,'diffusion_crack_history.npy'), diffusion_crack_data)
np.save(os.path.join(DATAFILE_PATH,'rc_flexure_history.npy'), rc_flexure_data)
np.save(os.path.join(DATAFILE_PATH,'rc_shear_history.npy'), rc_shear_data)
np.save(os.path.join(DATAFILE_PATH,'likelihood_weighting.npy'), likelihood_weighting_data)
## calculate mean and stds
chloride_mean_history, chloride_std_history = weightedAvgAndStdFromSum(chloride_sums)
corrosion_prob_history, dummy = weightedAvgAndStdFromSum(corrosion_state_sums)
corrosion_rate_mean_history, corrosion_rate_std_history = weightedAvgAndStdFromSum(corrosion_rate_sums)
mean_corrosion_rate_mean_history, mean_corrosion_rate_std_history = weightedAvgAndStdFromSum(mean_corrosion_rate_sums)
residual_diameter_mean_history, residual_diameter_std_history = weightedAvgAndStdFromSum(residual_diameter_sums)
radial_pressure_mean_history, radial_pressure_std_history = weightedAvgAndStdFromSum(radial_pressure_sums)
crack_prob_history, dummy = weightedAvgAndStdFromSum(crack_prob_sums)
ds_crack_mean_history, ds_crack_std_history = weightedAvgAndStdFromSum(ds_crack_sums)
crack_width_mean_history, crack_width_std_history = weightedAvgAndStdFromSum(crack_width_sums)
diffusion_crack_mean_history, diffusion_crack_std_history = weightedAvgAndStdFromSum(diffusion_crack_sums)
rc_flexure_mean_history, rc_flexure_std_history = weightedAvgAndStdFromSum(rc_flexure_sums)
rc_shear_mean_history, rc_shear_std_history = weightedAvgAndStdFromSum(rc_shear_sums)
# save data to text file
datafile = os.path.join(DATAFILE_PATH, 'LWS_results.txt')
with open(datafile, 'w') as f_handle:
np.savetxt(f_handle, np.array(['# service life']), fmt="%s")
np.savetxt(f_handle, service_time.reshape(1, service_time.size), fmt='%d')
np.savetxt(f_handle, np.array(['# chloride history (mean)']), fmt='%s')
np.savetxt(f_handle, chloride_mean_history.reshape(1, chloride_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# chloride history (std)']), fmt='%s')
np.savetxt(f_handle, chloride_std_history.reshape(1, chloride_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# corrosion prob history']), fmt='%s')
np.savetxt(f_handle, corrosion_prob_history.reshape(1, corrosion_prob_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# corrosion rate history (mean)']), fmt='%s')
np.savetxt(f_handle, corrosion_rate_mean_history.reshape(1, corrosion_rate_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# corrosion rate history (std)']), fmt='%s')
np.savetxt(f_handle, corrosion_rate_std_history.reshape(1, corrosion_rate_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# mean corrosion rate history (mean, outdated no use)']), fmt='%s')
np.savetxt(f_handle, mean_corrosion_rate_mean_history.reshape(1, mean_corrosion_rate_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# mean corrosion rate history (std, outdated no use)']), fmt='%s')
np.savetxt(f_handle, mean_corrosion_rate_std_history.reshape(1, mean_corrosion_rate_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# residual diameter history (mean)']), fmt='%s')
np.savetxt(f_handle, residual_diameter_mean_history.reshape(1, residual_diameter_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# residual diameter history (std)']), fmt='%s')
np.savetxt(f_handle, residual_diameter_std_history.reshape(1, residual_diameter_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# radial pressure history (mean)']), fmt='%s')
np.savetxt(f_handle, radial_pressure_mean_history.reshape(1, radial_pressure_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# radial pressure history (std)']), fmt='%s')
np.savetxt(f_handle, radial_pressure_std_history.reshape(1, radial_pressure_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# crack prob history']), fmt='%s')
np.savetxt(f_handle, crack_prob_history.reshape(1, crack_prob_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# ds at crack history (mean)']), fmt='%s')
np.savetxt(f_handle, ds_crack_mean_history.reshape(1, ds_crack_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# ds at crack history (std)']), fmt='%s')
np.savetxt(f_handle, ds_crack_std_history.reshape(1, ds_crack_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# crack width history (mean)']), fmt='%s')
np.savetxt(f_handle, crack_width_mean_history.reshape(1, crack_width_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# crack width history (std)']), fmt='%s')
np.savetxt(f_handle, crack_width_std_history.reshape(1, crack_width_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# cracked concrete diffusion history (fw, mean)']), fmt='%s')
np.savetxt(f_handle, diffusion_crack_mean_history.reshape(1, diffusion_crack_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# cracked concrete diffusion history (fw, std)']), fmt='%s')
np.savetxt(f_handle, diffusion_crack_std_history.reshape(1, diffusion_crack_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# flexural resistance history (mean, kNm)']), fmt='%s')
np.savetxt(f_handle, rc_flexure_mean_history.reshape(1, rc_flexure_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# flexural resistance history (std, kNm)']), fmt='%s')
np.savetxt(f_handle, rc_flexure_std_history.reshape(1, rc_flexure_std_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# shear resistance history (mean, kN)']), fmt='%s')
np.savetxt(f_handle, rc_shear_mean_history.reshape(1, rc_shear_mean_history.size), fmt='%.4e')
np.savetxt(f_handle, np.array(['# shear resistance history (std, kN)']), fmt='%s')
np.savetxt(f_handle, rc_shear_std_history.reshape(1, rc_shear_std_history.size), fmt='%.4e')
if __name__ == '__main__':
print 'CALC: begin'
start_delta_time = time.time()
main()
delta_time = time.time() - start_delta_time
print 'DONE: ',str(datetime.timedelta(seconds=delta_time))