Skip to content

Latest commit

 

History

History
95 lines (70 loc) · 1.76 KB

README.md

File metadata and controls

95 lines (70 loc) · 1.76 KB

How to use

dependences

  • docker
  • docker-compose

1. Build the image (to do only the first time)

  • create a folder for yours datasets:

    mkdir ~/datasets
    mkdir ~/scripts
  • open the terminal on the docker folder (where Dockerfile is placed)

  • build with command (it can take a lot of time):

    docker build --no-cache=true -t ml-image .

2. Run the image, Jupiter automatically starts

  • open the terminal on the docker folder (were docker-compose is placed)

  • run the container with the command:

    docker-compose up
  • open Jupiter on browser (psw: ml):

    localhost:8888

3. Connect on a new TTY (usefull to run some scripts outside Jupiter)

docker exec -it [container-id] bash

scripts folder

cd ../scripts

Tensorboard

  • If you need to use tensorboard run :

    docker exec -it machine_learning_tf tensorboard --logdir tf_logs/
  • open it on browser (URL):

    localhost:6006

    Clean up

    • see all the images:
    docker images -a
    • when you modify the Dockerfile is good to clean the dangling images:
    docker images --filter "dangling=true"
    docker rmi $(docker images -q --filter "dangling=true")

other commands

docker build --no-cache=true -t ml-image-gpu -f Dockerfile.gpu .

docker-compose -f docker-compose.yml up
nvidia-docker run \
--rm \
--device /dev/nvidia0:/dev/nvidia0 \
--device /dev/nvidiactl:/dev/nvidiactl \
--device /dev/nvidia-uvm:/dev/nvidia-uvm \
-p 8888:8888 \
-v ~/ML_fileLocali/notebooks:/notebooks/samples \
-v ~/ML_fileLocali/datasets:/datasets \
-v ~/machine_learning/notebooks:/notebooks \
-v ~/machine_learning/scripts:/scripts \
ml-final-8-6