forked from arneschneuing/DiffSBDD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inpaint.py
199 lines (161 loc) · 7.66 KB
/
inpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import argparse
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from Bio.PDB import PDBParser
from torch_scatter import scatter_mean
import utils
from lightning_modules import LigandPocketDDPM
from constants import FLOAT_TYPE, INT_TYPE
from analysis.molecule_builder import build_molecule, process_molecule
def prepare_ligand(biopython_atoms, atom_encoder):
coord = torch.tensor(np.array([a.get_coord()
for a in biopython_atoms]), dtype=FLOAT_TYPE)
types = torch.tensor([atom_encoder[a.element.capitalize()]
for a in biopython_atoms])
one_hot = F.one_hot(types, num_classes=len(atom_encoder))
return coord, one_hot
def inpaint_ligand(model, pdb_file, n_samples, ligand, fix_atoms,
add_n_nodes=None, center='ligand', sanitize=False,
largest_frag=False, relax_iter=0, timesteps=None,
resamplings=1, save_traj=False):
"""
Generate ligands given a pocket
Args:
model: Lightning model
pdb_file: PDB filename
n_samples: number of samples
ligand: reference ligand given in <chain>:<resi> format
fix_atoms: ligand atoms that should be fixed, e.g. "C1 N6 C5 C12"
center: 'ligand' or 'pocket'
add_n_nodes: number of ligand nodes to add, sampled randomly if 'None'
sanitize: whether to sanitize molecules or not
largest_frag: only return the largest fragment
relax_iter: number of force field optimization steps
timesteps: number of denoising steps, use training value if None
resamplings: number of resampling iterations
save_traj: save intermediate states to visualize a denoising trajectory
Returns:
list of molecules
"""
if save_traj and n_samples > 1:
raise NotImplementedError("Can only visualize trajectory with "
"n_samples=1.")
frames = timesteps if save_traj else 1
sanitize = False if save_traj else sanitize
relax_iter = 0 if save_traj else relax_iter
largest_frag = False if save_traj else largest_frag
# Load PDB
pdb_model = PDBParser(QUIET=True).get_structure('', pdb_file)[0]
# Define pocket based on reference ligand
residues = utils.get_pocket_from_ligand(pdb_model, ligand)
pocket = model.prepare_pocket(residues, repeats=n_samples)
# Get ligand
chain, resi = ligand.split(':')
ligand = utils.get_residue_with_resi(pdb_model[chain], int(resi))
fixed_atoms = [a for a in ligand.get_atoms() if a.get_name() in set(fix_atoms)]
n_fixed = len(fixed_atoms)
x_fixed, one_hot_fixed = prepare_ligand(fixed_atoms, model.lig_type_encoder)
if add_n_nodes is None:
num_nodes_lig = model.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
num_nodes_lig = torch.clamp(num_nodes_lig, min=n_fixed)
else:
num_nodes_lig = torch.ones(n_samples, dtype=int) * n_fixed + add_n_nodes
ligand_mask = utils.num_nodes_to_batch_mask(
len(num_nodes_lig), num_nodes_lig, model.device)
ligand = {
'x': torch.zeros((len(ligand_mask), model.x_dims),
device=model.device, dtype=FLOAT_TYPE),
'one_hot': torch.zeros((len(ligand_mask), model.atom_nf),
device=model.device, dtype=FLOAT_TYPE),
'size': num_nodes_lig,
'mask': ligand_mask
}
# fill in fixed atoms
lig_fixed = torch.zeros_like(ligand_mask)
for i in range(n_samples):
sele = (ligand_mask == i)
x_new = ligand['x'][sele]
x_new[:n_fixed] = x_fixed
ligand['x'][sele] = x_new
h_new = ligand['one_hot'][sele]
h_new[:n_fixed] = one_hot_fixed
ligand['one_hot'][sele] = h_new
fixed_new = lig_fixed[sele]
fixed_new[:n_fixed] = 1
lig_fixed[sele] = fixed_new
# Pocket's center of mass
pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
# Run sampling
xh_lig, xh_pocket, lig_mask, pocket_mask = model.ddpm.inpaint(
ligand, pocket, lig_fixed, center=center,
resamplings=resamplings, timesteps=timesteps, return_frames=frames)
# Treat intermediate states as molecules for downstream processing
if save_traj:
xh_lig = utils.reverse_tensor(xh_lig)
xh_pocket = utils.reverse_tensor(xh_pocket)
# # Repeat last frame to see final sample better.
# xh_lig = torch.cat([xh_lig, xh_lig[-1:].repeat(10, 1, 1)], dim=0)
# xh_pocket = torch.cat([xh_pocket, xh_pocket[-1:].repeat(10, 1, 1)], dim=0)
lig_mask = torch.arange(xh_lig.size(0), device=model.device
).repeat_interleave(len(lig_mask))
pocket_mask = torch.arange(xh_pocket.size(0), device=model.device
).repeat_interleave(len(pocket_mask))
xh_lig = xh_lig.view(-1, xh_lig.size(2))
xh_pocket = xh_pocket.view(-1, xh_pocket.size(2))
# Move generated molecule back to the original pocket position
pocket_com_after = scatter_mean(xh_pocket[:, :model.x_dims], pocket_mask, dim=0)
xh_pocket[:, :model.x_dims] += \
(pocket_com_before - pocket_com_after)[pocket_mask]
xh_lig[:, :model.x_dims] += \
(pocket_com_before - pocket_com_after)[lig_mask]
# Build mol objects
x = xh_lig[:, :model.x_dims].detach().cpu()
atom_type = xh_lig[:, model.x_dims:].argmax(1).detach().cpu()
molecules = []
for mol_pc in zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask)):
mol = build_molecule(*mol_pc, model.dataset_info, add_coords=True)
mol = process_molecule(mol,
add_hydrogens=False,
sanitize=sanitize,
relax_iter=relax_iter,
largest_frag=largest_frag)
if mol is not None:
molecules.append(mol)
return molecules
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('checkpoint', type=Path)
parser.add_argument('--pdbfile', type=str)
parser.add_argument('--ref_ligand', type=str, default=None)
parser.add_argument('--fix_atoms', type=str, nargs='+', default=None)
parser.add_argument('--outfile', type=Path)
parser.add_argument('--n_samples', type=int, default=20)
parser.add_argument('--add_n_nodes', type=int, default=None)
parser.add_argument('--all_frags', action='store_true')
parser.add_argument('--relax', type=int, default=0)
parser.add_argument('--raw', action='store_true')
parser.add_argument('--resamplings', type=int, default=10)
parser.add_argument('--timesteps', type=int, default=50)
parser.add_argument('--save_traj', action='store_true')
args = parser.parse_args()
pdb_id = Path(args.pdbfile).stem
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load model
model = LigandPocketDDPM.load_from_checkpoint(
args.checkpoint, map_location=device)
model = model.to(device)
molecules = inpaint_ligand(model, args.pdbfile, args.n_samples,
args.ref_ligand, args.fix_atoms,
args.add_n_nodes, center='pocket',
sanitize=not args.raw,
largest_frag=not args.all_frags,
relax_iter=args.relax,
timesteps=args.timesteps,
resamplings=args.resamplings,
save_traj=args.save_traj)
# Make SDF files
utils.write_sdf_file(args.outfile, molecules)