diff --git a/Lesson3_BP.ipynb b/Lesson3_BP.ipynb index 6bf9b53..79ea8de 100644 --- a/Lesson3_BP.ipynb +++ b/Lesson3_BP.ipynb @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "id": "TycsC-y6gmpz" }, @@ -136,7 +136,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "id": "_GAtzybPgmp1" }, @@ -217,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "id": "ScMtPuRbgmp2" }, @@ -294,7 +294,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { "id": "t9qFVtzXgmp4" }, @@ -344,7 +344,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "id": "6HzNe9zngmp5" }, @@ -396,7 +396,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "id": "S6PolFOFgmp6" }, @@ -429,7 +429,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "id": "R6UFiQZwgmp6" }, @@ -522,7 +522,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "id": "EquY5VXYgmp7", "colab": { @@ -578,13 +578,13 @@ "source": [ "## Using ANI for Feature Extraction\n", "\n", - "Here is an example where we use the ANI model for feature extraction. We will use values for the symmetry function parameters from the ASE_ANI model references (https://github.com/isayev/ASE_ANI), which serves as an interface for the TorchANI (https://doi.org/10.1021/acs.jcim.0c00451) software package.\n", + "Here is an example where we use the ANI model for feature extraction. We will use values for the symmetry function parameters from the ASE_ANI model references (https://github.com/isayev/ASE_ANI), which serves as an interface for the TorchANI (https://doi.org/10.1021/acs.jcim.0c00451) software package. The BP parameters in this tutorial are not optimized for this system. The parameters can be optimized following the procedures outlined in https://doi.org/10.1002/qua.24890.\n", "\n" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { "id": "f0Vf6S6egmp8", "colab": { @@ -701,7 +701,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "id": "Y9pQYh2Bgmp9" }, @@ -713,7 +713,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": { "id": "SHvZFE4Fgmp9" }, @@ -734,7 +734,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "id": "Qg2tueuMgmp9", "colab": { @@ -794,7 +794,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": { "id": "peKDL7Ufgmp-", "colab": { @@ -836,7 +836,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": { "id": "fsotMUSxgmp-", "colab": { @@ -890,7 +890,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "id": "Jcd1TkxZgmp-", "colab": {