diff --git a/resources/auxiliary_workflows/benchmark/resources/method_definitions/viloca_alpha_0.00001_K100.py b/resources/auxiliary_workflows/benchmark/resources/method_definitions/viloca_alpha_0.00001_K100.py new file mode 100644 index 00000000..a46c125f --- /dev/null +++ b/resources/auxiliary_workflows/benchmark/resources/method_definitions/viloca_alpha_0.00001_K100.py @@ -0,0 +1,138 @@ +# GROUP: global +# CONDA: libshorah +# CONDA: biopython = 1.79 +# PIP: git+https://github.com/LaraFuhrmann/shorah@master + +import subprocess +from pathlib import Path +from os import listdir +from os.path import isfile, join +from Bio import SeqIO +import gzip + + +def gunzip(source_filepath, dest_filepath, block_size=65536): + with gzip.open(source_filepath, "rb") as s_file, open( + dest_filepath, "wb" + ) as d_file: + while True: + block = s_file.read(block_size) + if not block: + break + else: + d_file.write(block) + + +def main( + fname_bam, + fname_reference, + fname_insert_bed, + fname_results_snv, + fname_result_haplos, + dname_work, +): + genome_size = str(fname_bam).split("genome_size~")[1].split("__coverage")[0] + alpha = 0.00001 + n_max_haplotypes = 100 + n_mfa_starts = 1 + win_min_ext = 0.85 + + read_length = str(fname_bam).split("read_length~")[1].split("__")[0] + if read_length == "Ten_strain_IAV": + sampler = "learn_error_params" + win_min_ext = 0.5 + else: + sampler = "use_quality_scores" + + dname_work.mkdir(parents=True, exist_ok=True) + if fname_insert_bed == []: + subprocess.run( + [ + "shorah", + "shotgun", + "-b", + fname_bam.resolve(), + "-f", + Path(fname_reference).resolve(), + "--mode", + str(sampler), + "--alpha", + str(alpha), + "--n_max_haplotypes", + str(n_max_haplotypes), + "--n_mfa_starts", + str(n_mfa_starts), + "--win_min_ext", + str(win_min_ext), + ], + cwd=dname_work, + ) + else: + # insert bed file is there + subprocess.run( + [ + "shorah", + "shotgun", + "-b", + fname_bam.resolve(), + "-f", + Path(fname_reference).resolve(), + "-z", + Path(fname_insert_bed).resolve(), + "--mode", + str(sampler), + "--alpha", + str(alpha), + "--n_max_haplotypes", + str(n_max_haplotypes), + "--n_mfa_starts", + str(n_mfa_starts), + "--win_min_ext", + str(win_min_ext), + ], + cwd=dname_work, + ) + + (dname_work / "snv" / "SNVs_0.010000_final.vcf").rename(fname_results_snv) + + mypath = (dname_work / "support").resolve() + onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] + print("onlyfiles", onlyfiles) + for file in onlyfiles: + if "reads-support.fas" in file: + file_name = onlyfiles[0] + fname_haplos = (dname_work / "support" / onlyfiles[0]).resolve() + if file.endswith(".gz"): + fname_zipped = (dname_work / "support" / onlyfiles[0]).resolve() + fname_haplos = onlyfiles[0].split(".gz")[0] + fname_unzipped = (dname_work / "support" / fname_haplos).resolve() + # unzip + gunzip(fname_zipped, fname_result_haplos) + + elif file.endswith(".fas"): + fname_haplos = (dname_work / "support" / onlyfiles[0]).resolve() + (dname_work / "support" / file).rename(fname_result_haplos) + + # fix frequency information + + freq_list = [] + for record in SeqIO.parse(fname_result_haplos, "fasta"): + freq_list.append(float(record.description.split("ave_reads=")[-1])) + norm_freq_list = [float(i) / sum(freq_list) for i in freq_list] + + record_list = [] + for idx, record in enumerate(SeqIO.parse(fname_result_haplos, "fasta")): + record.description = f"freq:{norm_freq_list[idx]}" + record_list.append(record) + SeqIO.write(record_list, fname_result_haplos, "fasta") + + +if __name__ == "__main__": + main( + Path(snakemake.input.fname_bam), + Path(snakemake.input.fname_reference), + snakemake.input.fname_insert_bed, + Path(snakemake.output.fname_result), + Path(snakemake.output.fname_result_haplos), + Path(snakemake.output.dname_work), + )