-
Notifications
You must be signed in to change notification settings - Fork 0
/
A06_anisotropy.tex
48 lines (44 loc) · 1.42 KB
/
A06_anisotropy.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
anisotropy measures
velocity anisotropy tensor (symmetric, traceless, no elements in isotropic flow):
\begin{equation}
b_{i,j} = \frac{<u_i'u_j'>}{<u_k'u_k'>} - \frac{\delta_ij}{3}
\end{equation}
can be expressed similarly for the scalar gradient field (if you have the fluctuations along x,y,z axes)
and the vorticity field where $\omega = \grad x u$
\begin{equation}
b_{11} = \frac{<u_1'u_1'>}{<u_2'u_2'>}
+ \frac{<u_1'u_1'>}{<u_3'u_3'>}
\end{equation}
\begin{equation}
b_{12} = \frac{<u_1'u_2'>}{<u_1'u_1'>}
+ \frac{<u_1'u_2'>}{<u_2'u_2'>}
+ \frac{<u_1'u_2'>}{<u_3'u_3'>}
\end{equation}
\begin{equation}
b_{22} = \frac{<u_1'u_1'>}{<u_2'u_2'>}
+ \frac{<u_1'u_1'>}{<u_3'u_3'>}
\end{equation}
\begin{equation}
b_{23} = \frac{<u_2'u_3'>}{<u_1'u_1'>}
+ \frac{<u_2'u_3'>}{<u_2'u_2'>}
+ \frac{<u_2'u_3'>}{<u_3'u_3'>}
\end{equation}
\begin{equation}
b_{13} = \frac{<u_1'u_3'>}{<u_1'u_1'>}
+ \frac{<u_1'u_3'>}{<u_2'u_2'>}
+ \frac{<u_1'u_3'>}{<u_3'u_3'>}
\end{equation}
\begin{equation}
b_{33} = \frac{<u_3'u_3'>}{<u_1'u_1'>}
+ \frac{<u_3'u_3'>}{<u_2'u_2'>}
\end{equation}
where angle brackets are a volume average
code up the anisotropy tensor:
b11 = u*2/v*2 + u*2/w*2
b22 = v*2/u*2 + v*2/w*2
b33 = w*2/u*2 + w*2/v*2
b12 = u*v*/u*2 + u*v*/v*2 + u*v*/w*2
b13 = u*w*/u*2 + u*w*/v*2 + u*w*/w*2
b22 = v*w*/u*2 + v*w*/v*2 + v*w*/w*2
look at the evolution of these through time
and look at the depth distribution