forked from F-M-Lai/IWCSEC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crystal_fitting.py
151 lines (129 loc) · 6.22 KB
/
crystal_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
"""
This program is mainly used to calculate the functional relationship between energy ratio and area fraction.
It mainly requires modules: enclosure, crystal_plane, surface_areas, optimal_distance_local, area_change_trend,
bounded_bisecting, and total_surface_energy.
"""
import numpy as np
from cgeometry import enclosure
import nlopt
import matplotlib.pyplot as plt
from Inverse_Wulff_construction import crystal_plane, optimal_distance_local, surface_families_is_2, area_change_trend, bounded_bisecting, total_surface_energy
def target_areas(lb1, ub1, n_point, hkl):
'''
area fraction of different surfaces.
input:
lb1, ub1: the upper and lower bounds of the area where the area fraction is located.
n_point: number of divisions of the interval.
hkl: the surface couple.
return:
frac_area_couple: the given fractional areas.
x_data: the fractional area that need to be fitted to the energy ratios.
'''
frac_area = np.linspace(lb1, ub1, n_point)
frac_area_couple = []
for i in range(n_point):
frac_area_couple.extend([[frac_area[i], 1-frac_area[i]]])
while True:
fitting_surface = input('Please select the surface that need to be fitted to the energy ratios: ')
if fitting_surface != hkl[0] and fitting_surface != hkl[1]:
print ''
print ('Please choose the surface in the %s.' % hkl)
print ('Please input the correct value.')
print ''
elif fitting_surface == hkl[0]:
x_data = frac_area
break
elif fitting_surface == hkl[1]:
x_data = 1 - frac_area
break
else:
break
return frac_area_couple, x_data, fitting_surface
def fitted_fun(a, x):
'''
this function is used to fit the energy ratios and the fractional area.
'''
return (1-x)*(a[0]-a[1]*np.sqrt(x/((a[0]-1)*x + 1))) + x*(1.0/(a[2]-a[3]*np.sqrt((1-x)/((a[2]-1)*(1-x) + 1))))
def _residual(a, x_data, y_data):
return y_data - fitted_fun(a, x_data)
def _residual_sq(a, grad):
r = y_data - fitted_fun(a, x_data)
return sum(r*r)
if __name__=="__main__" :
print ''
print '1. Format of surface couple should be [[a1, b1, c1], [a2, b2, c2]].'
print ''
# hkl = [[1,2,2], [1,0,0]]
hkl = surface_families_is_2()
print ''
lb1 = 0.0 # lower bound of fractional area
ub1 = 1.0 # upper bound of fractional area
n_point = 12 # number of points that need to be fitted
energy_ratio_two = [0.1, 1.9] # function's increase and decrease
frac_area_couple, x_data, fitting_surface = target_areas(lb1, ub1, n_point, hkl)
planes, number_planes = crystal_plane(hkl)
object_func = total_surface_energy # objective function
local_optimize = nlopt.LN_COBYLA # local optimization method
lb_ub = [0.0, 2.0] # iteration interval
Iter_max = 5000 # the maximum number of iterations
re_xtol = 1e-6 # relative tolerance on optimization parameters
abs_ftol = 1e-6 # absolute tolerance on function value
d0 = [1.0, 1.0] # initial value
dx = 0.0001 # step size
energy_ratio = []
area_trend = area_change_trend(energy_ratio_two, object_func, local_optimize, Iter_max, re_xtol, abs_ftol, d0, dx)
for area_target in frac_area_couple:
print 'area_trend', area_trend
print area_target
crit_lb_ub, opt_dist = bounded_bisecting(lb_ub, area_trend, area_target, 1e-6, object_func, local_optimize,
Iter_max, re_xtol, abs_ftol, d0, dx)
energy_ratio.extend([crit_lb_ub])
print energy_ratio
print 'area is', x_data
y_data = np.array(energy_ratio) # the fitted function unsupported operand type(s) for -: 'int' and 'list'.
Iter_max = 50000
re_xtol = 1e-12
re_ftol = 1e-12
d0 = [2, 1, 2, 1]
dx = 0.0001
# Iter_max, re_xtol, re_ftol, d0, dx are for the fitting function "_residual_sq".
# The local optimization method is still "COBYLA".
fp = optimal_distance_local(_residual_sq, local_optimize, Iter_max, re_xtol, re_ftol, d0, dx)
print ''
print '************************************************ Parameters of fitting function ************************************************************'
print ''
print 'Coexisting_Surfaces_1: ', hkl[0]
print 'Coexisting_Surfaces_2: ', hkl[1]
print ''
# print 'Fractional area of [100] surface:', frac_area
print 'Surface energy-ratios of Gamma_%s/Gamma_%s:' % (hkl[0], hkl[1]), energy_ratio
print ''
print 'Parameters [a0, a1, a2, a3] of fitting function: [%s, %s, %s, %s]' % (fp[0][0], fp[0][1], fp[0][2], fp[0][3])
print ''
print '************************************************************* End ***************************************************************************'
print ''
x1 = min(x_data)
x2 = max(x_data)
xr = x2-x1
y1 = min(y_data)
y2 = max(y_data)
yr = y2-y1
x = np.linspace(x1, x2, 500)
y = fitted_fun(fp[0], x)
plt.figure(figsize=(5,4))
l2, = plt.plot(x, y, 'b-', linewidth=2.0)
l1, = plt.plot(x_data, y_data, 'ro')
plt.xlim(0, 1)
# plt.ylim(0.55, 1.75)
plt.yticks([0.55, 0.85, 1.15, 1.45, 1.75])
# plt.title("$(113)$")
S1 = bytes(hkl[0][0]*100+hkl[0][1]*10+hkl[0][2])
S2 = bytes(hkl[1][0]*100+hkl[1][1]*10+hkl[1][2])
S3 = bytes(fitting_surface[0]*100+fitting_surface[1]*10+fitting_surface[2])
plt.xlabel("Fractional Area, $A_{%s}/(A_{%s}+A_{%s})$" % (S3, S1, S2))
plt.ylabel("Energy Ratio, $\gamma_{%s}/\gamma_{%s}$" % (S1, S2))
plt.legend(handles = [l1,l2], labels = ['Actual Values', 'Fitting Curve'], loc = 'upper right')
plt.subplots_adjust(left=0.15, bottom=0.15)
plt.savefig("%s-%s.png" %(S1, S2), dpi=200)
plt.show()