-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoard.py
192 lines (154 loc) · 7.94 KB
/
Board.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from BoardValue import Val
def is_one_away(val1, val2):
"""Return whether or not the two values are numerically adjacent."""
return abs(val1 - val2) == 1
def get_directional_neighbors(row, col):
"""Given a row and column value, return the row and column values of the corresponding up, down, left and right
neighboring squares."""
return [[a + b for a, b in zip((row, col), directional)]
for directional in ((-1, 0), (1, 0), (0, -1), (0, 1))]
def get_all_coordinates_at_distance(row, col, distance):
"""Return all feasible coordinates in a board which have a Manhattan Distance of `distance` from the location given
by (row, col)."""
coordinates = set()
if distance <= 0:
return coordinates
pairs = [(x, distance - x) for x in range(distance + 1)]
for quadrant_multiplier in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
row_multiplier, col_multiplier = quadrant_multiplier
for row_pair_part, col_pair_part in pairs:
r = row + (row_pair_part * row_multiplier)
c = col + (col_pair_part * col_multiplier)
if 0 <= r < 9 and 0 <= c < 9:
coordinates.add((r, c))
return coordinates
class Board:
"""A Numbrix board.
A board is represented as a 9x9 grid of values, stored internally as a 1-dimensional array.
"""
def __init__(self, other_board=None):
if other_board is not None:
self.board = []
for val in other_board.board:
self.board.append(Val(val_to_copy=val))
else:
self.board = [
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(),
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(),
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(),
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(),
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(),
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(),
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(),
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(),
Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val(), Val()
]
def is_complete(self):
"""Check if the board has valid values for all squares."""
return False not in [v.is_set() for v in self.board]
def is_not_feasible(self):
"""Check if the current board is no longer feasible.
This may happen if:
* Any squares no longer have any feasible values which they can hold
* Any squares have become somewhat surrounded but they do not have their required "correct neighbors"
"""
for row in range(9):
for col in range(9):
val = self.get(row, col)
if val.is_set() and not self.would_be_feasible(row, col, val.get()):
return True
return len([1 for v in self.board if not v.is_set() and v.possible_values_size() == 0]) > 0
def get(self, row, col):
"""Using row-major ordering, get the value at location (row, col) or return None if the index is bad."""
if not (0 <= row < 9 and 0 <= col < 9):
return None
return self.board[row * 9 + col]
def set(self, row, col, val):
"""Using row-major ordering, set the value at location (row, col).
This operation will also ripple throughout the rest of the board, progressively removing possible values from
the surrounding squares on the board.
For example, if the middle of the board is set to value 50, everything else in the board should lose the
possibility of having the value 50, every square a Manhattan Distance of 2 or greater away should also lose the
values 49 and 51, etc.
"""
if not (0 <= row < 9 and 0 <= col < 9):
raise ValueError(f"Row and column values must be in the range [0 .. 8] but got row: {row}, column: {col}")
self.board[row * 9 + col].set(val)
for distance in range(1, 17): # 16 is the maximum board distance
for r, c in get_all_coordinates_at_distance(row, col, distance):
for v in range(val, val + distance):
self.get(r, c).remove_possible_value(v)
for v in range(val - distance + 1, val):
self.get(r, c).remove_possible_value(v)
def would_be_feasible(self, row, col, val):
"""Check if the provided value would be feasible at the specified location.
For a value to be feasible at a location, it must have (provided it is not 1 or 81):
* At least two open neighbors (if none of the directional neighbors are correct)
* Or one correct directional neighbor and at least one open neighbor
* Or two correct directional neighbors
If the value is 1 or 81:
* It can either have at least one open neighbor
* Or one correct directional neighbor
"""
open_neighbors = 0
correct_directional_neighbors = 0
for directional_row, directional_col in get_directional_neighbors(row, col):
if not (0 <= directional_row < 9 and 0 <= directional_col < 9):
continue
directional_val = self.get(directional_row, directional_col)
if not directional_val.is_set():
open_neighbors += 1
elif is_one_away(val, directional_val.get()):
correct_directional_neighbors += 1
if val == 1 or val == 81:
return open_neighbors >= 1 or correct_directional_neighbors == 1
else:
return (correct_directional_neighbors == 0 and open_neighbors >= 2) or \
(correct_directional_neighbors == 1 and open_neighbors >= 1) or \
correct_directional_neighbors == 2
def get_next_boards(self):
"""Evaluate the board and take the next logical assignments on some specific square. Return all boards that
represent feasible moves on the minimal options location.
"""
next_boards = []
minimal_options_val_tuple = None
for row in range(9):
for col in range(9):
val = self.get(row, col)
if not val.is_set() and (
minimal_options_val_tuple is None
or val.possible_values_size() < minimal_options_val_tuple[0].possible_values_size()):
minimal_options_val_tuple = (val, row, col)
# Minimal options location has been identified, now return all feasible values as possible next boards
val, row, col = minimal_options_val_tuple
for value in val.possible_values:
if self.would_be_feasible(row, col, value):
new_board = Board(other_board=self)
new_board.set(row, col, value)
next_boards.append(new_board)
return next_boards
def __repr__(self):
"""What should the board look like when it is printed? How about:
+----------------------------+
| 1 2 3 4 5 6 7 8 9 |
| 18 17 16 15 14 13 12 11 10 |
| 19 20 21 22 23 24 25 26 27 |
| 36 35 34 33 32 31 30 29 28 |
| 37 38 39 40 41 42 43 44 45 |
| 54 53 52 51 50 49 48 47 46 |
| 55 56 57 58 59 60 61 62 63 |
| 72 71 70 69 68 67 66 65 64 |
| 73 74 75 76 77 78 79 80 81 |
+----------------------------+
:return: The string representation of the board.
"""
output = " +----------------------------+\n"
for row in range(9):
for col in range(9):
if col == 0:
output += " |"
output += str(self.get(row, col)).rjust(3)
if col == 8:
output += " |\n"
output += " +----------------------------+"
return output