-
Notifications
You must be signed in to change notification settings - Fork 1
/
valueIterationAgents.py
121 lines (106 loc) · 4.59 KB
/
valueIterationAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# valueIterationAgents.py
# -----------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
import mdp, util
from sys import maxint
from learningAgents import ValueEstimationAgent
class ValueIterationAgent(ValueEstimationAgent):
"""
* Please read learningAgents.py before reading this.*
A ValueIterationAgent takes a Markov decision process
(see mdp.py) on initialization and runs value iteration
for a given number of iterations using the supplied
discount factor.
"""
def __init__(self, mdp, discount = 0.9, iterations = 100):
"""
Your value iteration agent should take an mdp on
construction, run the indicated number of iterations
and then act according to the resulting policy.
Some useful mdp methods you will use:
mdp.getStates()
mdp.getPossibleActions(state)
mdp.getTransitionStatesAndProbs(state, action)
mdp.getReward(state, action, nextState)
mdp.isTerminal(state)
"""
self.mdp = mdp
self.mdpStates = mdp.getStates()
self.discount = discount
self.iterations = iterations
self.values = util.Counter() # A Counter is a dict with default 0
self.discount = discount
newValues ={}
#Initilize this dictionary
for s in self.mdpStates:
self.values[s] = 0
newValues[s] = 0
# Write value iteration code here
"*** YOUR CODE HERE ***"
for i in range (0, iterations):
for s in self.mdpStates:
if (self.mdp.isTerminal(s)):
continue
bestActionValue = -maxint
allPossibleActions = mdp.getPossibleActions(s)
for a in allPossibleActions:
thisActionValue = self.computeQValueFromValues(state = s, action=a)
if (bestActionValue < thisActionValue):
bestActionValue = thisActionValue
newValues[s] = bestActionValue
self.values = newValues.copy()
return
def getValue(self, state):
"""
Return the value of the state (computed in __init__).
"""
return self.values[state]
def computeQValueFromValues(self, state, action):
"""
Compute the Q-value of action in state from the
value function stored in self.values.
"""
"*** YOUR CODE HERE ***"
qValue = 0.0
nextStateProbilityCombo = self.mdp.getTransitionStatesAndProbs(state, action)
for nextStatecombo in nextStateProbilityCombo:
nextState = nextStatecombo[0]
prob = nextStatecombo[1]
qValue += prob* (self.mdp.getReward(state, action, nextState) + self.discount * self.values[nextState])
return qValue
def computeActionFromValues(self, state):
"""
The policy is the best action in the given state
according to the values currently stored in self.values.
You may break ties any way you see fit. Note that if
there are no legal actions, which is the case at the
terminal state, you should return None.
"""
"*** YOUR CODE HERE ***"
if (self.mdp.isTerminal(state)):
return "pass"
actions = self.mdp.getPossibleActions(state)
bestActionValue = -maxint
bestaction = actions[0]
for a in actions:
qValueWithCurrentAction = self.computeQValueFromValues(state = state, action=a)
if (qValueWithCurrentAction > bestActionValue):
bestActionValue = qValueWithCurrentAction
bestaction = a
return bestaction
def getPolicy(self, state):
return self.computeActionFromValues(state)
def getAction(self, state):
"Returns the policy at the state (no exploration)."
return self.computeActionFromValues(state)
def getQValue(self, state, action):
return self.computeQValueFromValues(state, action)