-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdls_file_search_rnd_choose.py
187 lines (159 loc) · 11.1 KB
/
dls_file_search_rnd_choose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import pandas as pd
import os
import numpy as np
class Dls_Raw_Results():
def __init__(self, folder=None, folder_stack=None, column_selection=None):
self.folder = folder
self.files = []
self.dls_data = None
self.found = None
self.folder_stack = folder_stack
self.files_formulations = []
self.column_selection = column_selection
self.random_dataframe = pd.DataFrame()
self.output_dataframe = pd.DataFrame()
def collect_csv(self):
'''
This function will call on the folder that was initalised when the class was called, and 'walk'
through it to collect all files, place them in a list. Once collected, it will check for only csv/CSV
files. These csv files will be read in by Pandas (encoding is due to the DLS data being in Hebrew) and that
data will be appended to the main data frame.
:return: A dataframe of the DLS data
'''
for (dirpath, dirnames, filenames) in os.walk(self.folder):
self.files.extend(filenames)
for f in self.files:
if f.endswith(('.csv', '.CSV')):
print(str(f))
dw = pd.read_csv(os.path.join(self.folder, f), encoding="ISO-8859-8")
self.dls_data = self.dls_data.append(dw, ignore_index=True)
return self.dls_data
def clean_dls_data(self):
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.strip() # Clean up white spaces
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(?=)(\s)(\d)", "",
regex=True) # Remove the numbers proceeding the D(value)
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(?<=\d)(?=\-)", " ",
regex=True)
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(\s)(?<=)(\-)(?=)(\s)", "_",
regex=True) # Change the - into an _
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(?<=[A-Z]|\d)(\s)(?=\D)", "_",
regex=True) # Put an underscore between the GUID and D(value)
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(_FILTERED)", "",
regex=True) # Unique instance of putting the
# word filtered in dls naming
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.replace("(_FILTERED\d+)", "", regex=True)
self.dls_data['Sample Name'] = self.dls_data['Sample Name'].str.strip() # For good measure
self.list_dls_unique_scans = list(self.dls_data['Sample Name'].unique())
print("Number of unique DLS scans:", self.dls_data['Sample Name'].nunique())
print("DLS Samples Scanned: ", *iter(self.list_dls_unique_scans), sep=' | ')
def regression_output_files(self):
for folder_formulation in self.folder_stack:
for (dirpath, dirnames, filenames) in os.walk(folder_formulation):
dirnames[:] = [d for d in dirnames if '_complete' in d]
for file in filenames:
if file.endswith(('.xlsx', '.XLSX')):
self.files_formulations.append(os.path.join(dirpath, file))
###Need to remove 'cv_results' as these are large files and grinds the for loop to a halt
self.files_formulations[:] = [d for d in self.files_formulations if 'cv_results' not in d]
self.files_formulations[:] = [d for d in self.files_formulations if 'LiHa_Params' not in d]
for f in self.files_formulations:
if f.endswith(('.xlsx', '.XLSX')):
print(f)
if 'random_unlabeled' in f:
# print(str(f))
tdf_random = pd.read_excel(f)
tdf_random['location'] = 'random'
tdf_random['file_name'] = str(f)
self.random_dataframe = pd.concat([self.random_dataframe, tdf_random], ignore_index=True)
# self.dls_data = self.dls_data.append(dw, ignore_index=True)
elif 'Ouput_Selection_max_std_sampling' in f:
# Need to hardcode the skiprows for Output
tdf_output = pd.read_excel(f, skiprows=np.arange(13))
tdf_output['location'] = 'al'
tdf_output['file_name'] = str(f)
self.output_dataframe = pd.concat([self.output_dataframe, tdf_output], ignore_index=True)
# header=0)
# print(tdf_output)
self.random_dataframe.drop(columns=['original_index'], inplace=True)
self.random_dataframe.rename(columns={'Unnamed: 0': 'original_index'}, inplace=True)
self.output_dataframe.drop(columns=['sample_scoring'], inplace=True)
self.combined_data = pd.concat([self.output_dataframe, self.random_dataframe])
self.combined_data['original_index'] = self.combined_data['original_index'].astype(int)
self.combined_data.reset_index(drop=True)
self.combined_data = self.combined_data[self.column_selection]
def search(self, formulation_id):
if self.dls_data is not None:
self.found = self.dls_data[self.dls_data['Sample Name'].str.contains(formulation_id)]
else:
self.found = self.combined_data[self.combined_data['original_index'] == int(formulation_id)]
print(self.found)
print(self.found.index)
def search_via_formulation(self, formulation_data):
formulation_data = pd.read_excel(formulation_data)
# Compare column names first
#formulation_data_selection = formulation_data[self.column_selection]
formulation_column_selection = list(formulation_data.columns.intersection(self.combined_data.columns))
temp_columns_combined_data = list(self.combined_data.columns)
temp_columns_combined_data.remove('original_index')
temp_columns_combined_data.remove('location')
temp_columns_combined_data.remove('file_name')
formulation_data.loc[formulation_data['mw_cp_2'] == 430.6999999999999, 'mw_cp_2'] = 430.7
formulation_data.loc[formulation_data['Ratio_2'] == 0.44999999999999996, 'Ratio_2'] = 0.45
formulation_data.loc[formulation_data['Ratio_2'] == 0.4499999999999999, 'Ratio_2'] = 0.45
formulation_data = formulation_data[formulation_column_selection]
mask = self.combined_data.columns.isin(formulation_data.columns)
df = self.combined_data[self.combined_data.columns[mask]]
formulation_data = formulation_data.astype(df.dtypes)
print('Combined Dataframe Column Info')
print(self.combined_data.info())
print('Formulation Dataframe Column Info')
print(formulation_data.info())
merge_dfs = self.combined_data.merge(formulation_data.drop_duplicates(), left_on=temp_columns_combined_data,
right_on=list(formulation_data),
how='left', indicator=True)
found_results = merge_dfs[merge_dfs['_merge'] == 'both']
found_results.drop_duplicates(inplace=True)
file_name = os.path.join(r"/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output/","joined_files.xlsx")
print(found_results)
found_results.to_excel(file_name)
##Test
folder_stack = [r'/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output',
r'/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output/AL_Output_Prev Iteration_EthanolDil_Issue',
r'/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output/AL_Output - Rectified ETHANOLDILIssue',
r'/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output/To be sorted',
r'/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output/Random_Output',
r'/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output/AL_Output_temp_out',
r'/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output/AL_OUTPUT_Current']
test = Dls_Raw_Results(folder_stack=folder_stack, column_selection=['original_index',
'Concentration_1 (mM)',
'Ratio_1',
'Overall_Concentration_2',
'Ratio_2',
'Concentration_4',
'Ratio_4',
'Final_Vol',
'Lipid_Vol_Pcnt',
'Dispense_Speed_uls',
'mw_cp_1',
#'xlogp_cp_1',
#'complexity_cp_1',
#'heavy_atom_count_cp_1',
#'single_bond_cp_1',
#'double_bond_cp_1',
'mw_cp_2',
#'h_bond_acceptor_count_cp_2',
#'xlogp_cp_2',
#'complexity_cp_2',
#'heavy_atom_count_cp_2',
#'tpsa_cp_2',
#'ssr_cp_2',
#'single_bond_cp_2',
#'double_bond_cp_2',
#'aromatic_bond_cp_2',
'location',
'file_name'
])
test.regression_output_files()
#test.search(432852)
test.search_via_formulation(
formulation_data=r'/Users/calvin/Library/CloudStorage/OneDrive-Personal/Documents/2022/RegressorCommittee_Output/formulation_find/formulation_find.xlsx')