-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbases.py
80 lines (58 loc) · 2.61 KB
/
bases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Base classes for Active Learning Algorithm
"""
import abc
import warnings
import sys
from typing import List, Callable, Iterator
from sklearn.base import BaseEstimator
class BaseModel(object):
def __init__(self):
pass
def gridsearch(self):
pass
def fit_predict(self):
pass
class BaseComittee(abc.ABC, BaseEstimator):
def __init__(self, learner_list: List[BaseModel], query_strategy: Callable):
assert type(learner_list) == list, 'learners must be supplied in a list'
self.learner_list = learner_list
self.query_strategy = query_strategy
def __iter__(self) -> Iterator[BaseModel]:
"""Appears to iterate through the list of learners"""
for learner in self.learner_list:
yield learner
def __len__(self) -> int:
"""Returns the number of learners - Why?"""
return len(self.learner_list)
def _fit_to_known(self, bootstrap: bool = False, **fit_kwargs):
""" Fits all learners to the training data nd labels provided to it so far"""
for learner in self.learner_list:
learner._fit_to_known(bootstrap=bootstrap, **fit_kwargs)
def _fit_on_new(self, X, y, bootstrap: bool = False, **fit_kwargs):
for learner in self.learner_list:
learner._fit_on_new(X, y, bootstrap=bootstrap, **fit_kwargs)
def fit(self, classifier_opt, X_train, y_train, X_val, X_test, c_weight, **fit_kwargs) -> 'BaseComittee':
for learner in self.learner_list:
learner.fit_predict(classifier_opt, X_train, y_train, X_val, X_test, c_weight, **fit_kwargs)
return self
def query(self, X_val, return_metrics: bool = False, *query_args, **query_kwargs):
try:
query_result, query_metrics = self.query_strategy(
self, X_val, *query_args, **query_kwargs)
except:
query_metrics = None
query_result=self.query_strategy(self, X_val, *query_args,**query_kwargs)
if return_metrics:
if query_metrics is None:
warnings.warn(''
'The selected query strategy does not support return_metrics')
return query_result, retrieve_rows(X_val, query_result), query_metrics
else:
return query_result, retrieve_rows(X_val, query_result)
def teach(self, X, y, bootstrap: bool=False, only_new: bool = False, **fit_kwargs):
self._add_training_data(X, y)
if not only_new:
self._fit_to_known(bootstrap=bootstrap, **fit_kwargs)
else:
self._fit_on_new(X, y, bootstrap=bootstrap, **fit_kwargs)