-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_ensemble_scores.py
55 lines (43 loc) · 1.89 KB
/
get_ensemble_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
'''
Outer API call to specify folder full of images to score. The script calls each of the 2 models
and stores the scores dicts independently. Finally, the scores are averaged (where possible) and
a CSV file is output with the predicted score for each image. If an image does not get a score in
either model, its score is reported as NA
'''
import glob
import os
import sys
sys.path.insert(0, 'model_1')
sys.path.insert(1, 'model_2')
import pandas as pd
import absl.flags as flags
import absl.app as app
import model_1.predict_aac_scores as model_1
import model_2.predict_aac_scores_2 as model_2
FLAGS = flags.FLAGS
def main(argv):
if FLAGS.img_dir is None:
raise ValueError('Image folder missing. Use --img_dir= argument to set this folder name.')
# compute model 1 scores
print('Running model 1')
scores_1 = model_1.get_scores()
print('Model 1 complete')
# compute model 2 scores
print('Running model 2')
scores_2 = model_2.get_scores(FLAGS.img_dir)
print('Model 2 complete')
# get list of all png images in folder
img_names = glob.glob(os.path.join(FLAGS.img_dir, '*png'))
scores_dict = dict.fromkeys([os.path.basename(_) for _ in img_names], 'NA')
# loop through the image names, check for scores and update the dict
for img in scores_dict:
if img in scores_1 and img in scores_2:
scores_dict[img] = (scores_1[img] + scores_2[img])/2.
# write to csv file
img_names = list(scores_dict.keys())
scores = [scores_dict[name] for name in img_names]
df = pd.DataFrame(data={'img_name': img_names, 'predicted_score': scores})
df.to_csv(os.path.join(FLAGS.img_dir, 'predicted_aac_scores_ensemble.csv'), index=False)
print('Predictions completed on both models and ensemble scores written to {p}'.format(p=os.path.join(FLAGS.img_dir, 'predicted_aac_scores_ensemble.csv')))
if __name__ == '__main__':
app.run(main)