-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
115 lines (97 loc) · 4.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*- coding: utf-8 -*-
import os
import collections
from six.moves import cPickle
import numpy as np
import re
import itertools
class TextLoader():
def __init__(self, data_dir, batch_size, seq_length):
self.data_dir = data_dir
self.batch_size = batch_size
self.seq_length = seq_length
input_file = os.path.join(data_dir, "input.txt")
vocab_file = os.path.join(data_dir, "vocab.pkl")
tensor_file = os.path.join(data_dir, "data.npy")
# Let's not read vocab and data from file. We many change them.
if True or not (os.path.exists(vocab_file) and os.path.exists(tensor_file)):
print("reading text file")
self.preprocess(input_file, vocab_file, tensor_file)
else:
print("loading preprocessed files")
self.load_preprocessed(vocab_file, tensor_file)
self.create_batches()
self.reset_batch_pointer()
def clean_str(self, string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data
"""
string = re.sub(r"[^가-힣A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def build_vocab(self, sentences):
"""
Builds a vocabulary mapping from word to index based on the sentences.
Returns vocabulary mapping and inverse vocabulary mapping.
"""
# Build vocabulary
word_counts = collections.Counter(sentences)
# Mapping from index to word
vocabulary_inv = [x[0] for x in word_counts.most_common()]
vocabulary_inv = list(sorted(vocabulary_inv))
# Mapping from word to index
vocabulary = {x: i for i, x in enumerate(vocabulary_inv)}
return [vocabulary, vocabulary_inv]
def preprocess(self, input_file, vocab_file, tensor_file):
with open(input_file, "r") as f:
data = f.read()
# Optional text cleaning or make them lower case, etc.
#data = self.clean_str(data)
x_text = data.split()
self.vocab, self.words = self.build_vocab(x_text)
self.vocab_size = len(self.words)
with open(vocab_file, 'wb') as f:
cPickle.dump(self.words, f)
#The same operation like this [self.vocab[word] for word in x_text]
# index of words as our basic data
self.tensor = np.array(list(map(self.vocab.get, x_text)))
# Save the data to data.npy
np.save(tensor_file, self.tensor)
def load_preprocessed(self, vocab_file, tensor_file):
with open(vocab_file, 'rb') as f:
self.words = cPickle.load(f)
self.vocab_size = len(self.words)
self.vocab = dict(zip(self.words, range(len(self.words))))
self.tensor = np.load(tensor_file)
self.num_batches = int(self.tensor.size / (self.batch_size *
self.seq_length))
def create_batches(self):
self.num_batches = int(self.tensor.size / (self.batch_size *
self.seq_length))
if self.num_batches==0:
assert False, "Not enough data. Make seq_length and batch_size small."
self.tensor = self.tensor[:self.num_batches * self.batch_size * self.seq_length]
xdata = self.tensor
ydata = np.copy(self.tensor)
ydata[:-1] = xdata[1:]
ydata[-1] = xdata[0]
self.x_batches = np.split(xdata.reshape(self.batch_size, -1), self.num_batches, 1)
self.y_batches = np.split(ydata.reshape(self.batch_size, -1), self.num_batches, 1)
def next_batch(self):
x, y = self.x_batches[self.pointer], self.y_batches[self.pointer]
self.pointer += 1
return x, y
def reset_batch_pointer(self):
self.pointer = 0